Skip to main content
Log in

Atomic force microscopy studies of chemical–mechanical processes on silicon(100) surfaces

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Atomic force microscopy (AFM) is used to examine chemical–mechanical processes on Si(100) surfaces. The AFM tip serves as a single asperity contact to exert tribological forces as well as an imaging tool. By scanning in chemically aggressive solutions, material removal can be observed directly. In the silicon system, high-force scans are used to remove oxide and initiate etching in selected locations, followed by low-force scans to image the resulting surfaces. Material removal rates were measured as a function of applied load, number of scans, solution composition, and time. In basic solution, places where the underlying silicon is exposed etch rapidly, producing structures 100 nm or less in size. Although the surface roughness initially increases during etching, the final surfaces are smooth. The oxide is extremely sensitive to applied stress: even very light scanning accelerates oxide dissolution. Once the oxide is removed, chemical etching proceeds through the underlying silicon with or without AFM scanning; but the silicon etches more rapidly if AFM scanning is continued, due to true chemical–mechanical (tribochemical) effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Maw, F. Stevens, S.C. Langford, J.T. Dickinson, J. Appl. Phys. 92, 5103 (2002)

    Article  ADS  Google Scholar 

  2. F. Stevens, S.C. Langford, J.T. Dickinson, J. Appl. Phys. 99, 023529 (2006)

    Article  ADS  Google Scholar 

  3. F. Katsuki, A. Saguchi, W. Takahashi, J. Watanabe, Jpn. J. Appl. Phys. Part 1 41, 4919 (2002)

    Article  Google Scholar 

  4. W.C. Moon, T. Yoshinobu, H. Iwasaki, Ultramicroscopy 86, 49 (2001)

    Article  Google Scholar 

  5. E.D. Palik, V.M. Bermudez, O.J. Glembocki, J. Electrochem. Soc. 132, 871 (1985)

    Article  Google Scholar 

  6. H. Seidel, L. Csepregi, A. Heuberger, H. Baumgärtel, J. Electrochem. Soc. 137, 3612 (1990)

    Article  Google Scholar 

  7. E.D. Palik, H.G. Gray, P.B. Klein, J. Electrochem. Soc. 130, 956 (1983)

    Article  Google Scholar 

  8. M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, M. Ohwada, J. Appl. Phys. 68, 1272 (1990)

    Article  ADS  Google Scholar 

  9. K. Sakaino, Y. Kawabata, S. Adachi, J. Electrochem. Soc. 147, 1530 (2000)

    Article  Google Scholar 

  10. K. Sakaino, S. Adachi, Sens. Actuators A 88, 71 (2001)

    Article  Google Scholar 

  11. E.D. Palik, O.J. Glembocki, I.J. Heard, P.S. Burno, L. Tenerz, J. Appl. Phys. 70, 3291 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Dickinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imoto, R., Stevens, F., Langford, S.C. et al. Atomic force microscopy studies of chemical–mechanical processes on silicon(100) surfaces. Appl. Phys. A 94, 35–43 (2009). https://doi.org/10.1007/s00339-008-4802-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4802-x

PACS

Navigation