Skip to main content
Log in

Deposition and stoichiometry control of Nd-doped gadolinium gallium garnet thin films by combinatorial pulsed laser deposition using two targets of Nd:Gd3Ga5O12 and Ga2O3

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have demonstrated pulsed laser deposition of Nd-doped gadolinium gallium garnet on Y3Al5O12 by the simultaneous ablation of two separate targets of Nd:Gd3Ga5O12 (GGG) and Ga2O3. Such an approach is of interest as a method of achieving stoichiometry control over films whilst the growth parameters are kept constant and optimal for high quality crystal growth. We show here how the stoichiometry and resultant lattice parameter of a film can be controlled by changing the relative deposition rates from the two targets. Films have been grown with enough extra Ga to compensate for the deficiency that commonly occurs when depositing only from a GGG target. We have also grown crystalline GGG films with an enriched Ga concentration, and this unconventional approach to film stoichiometry control may have potential applications in the fabrication of films with advanced compositionally graded structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. R.W. Eason (ed.), Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials (Wiley, New Jersey, 2007)

    Google Scholar 

  2. T.C. May-Smith, C. Grivas, D.P. Shepherd, R.W. Eason, M.J.F. Healy, Appl. Surf. Sci. 223, 361 (2004)

    Article  ADS  Google Scholar 

  3. T.C. May-Smith, R.W. Eason, J. Cryst. Growth 308, 382 (2007)

    Article  ADS  Google Scholar 

  4. B. Dam, J.H. Rector, J. Johansson, S. Kars, R. Griessen, Appl. Surf. Sci. 96–98, 679–684 (1996)

    Article  ADS  Google Scholar 

  5. S.V. Gaponov, A.A. Gudkov, A.A. Fraerman, Sov. Phys. Tech. Phys. 27, 1130 (1982)

    Google Scholar 

  6. E.V. Pechen, S.I. Krasnosvobodtsev, G. Kessler, A. Richter, M. Panzner, O. Grossman, A. Teresaik, Phys. Status Solidi A 131, 179 (1992)

    Article  ADS  Google Scholar 

  7. A.A. Gorbunov, A.E. Tselev, D. Elefant, H. Geisler, G. Henninger, A. Mensch, D.C. Meyer, B. Wolf, P. Paufler, W. Pompe, C.M. Schneider, H. Worch, Appl. Phys. A 69, S463 (1999)

    Article  ADS  Google Scholar 

  8. A.A. Levin, D.C. Meyer, A. Gorbunov, A. Tselev, P. Gawlitza, H. Mai, W. Pompe, P. Paufler, Thin Solid Films 391, 47 (2001)

    Article  ADS  Google Scholar 

  9. E. Irissou, F. Vidal, T. Johnston, M. Chaker, D. Guay, A.N. Ryabinin, J. Appl. Phys. 99, 034904 (2006)

    Article  ADS  Google Scholar 

  10. S.J. Barrington, R.W. Eason, Rev. Sci. Instrum. 71, 4223 (2000)

    Article  ADS  Google Scholar 

  11. L. Dobrzycki, E. Bulska, D.A. Pawlak, Z. Frukacz, K. Wozniak, Inorg. Chem. 43, 7656 (2004)

    Article  Google Scholar 

  12. H. Sawada, J. Solid State Chem. 132, 302 (1997)

    ADS  Google Scholar 

  13. F.S. Galasso, Structure and Properties of Inorganic Solids (Pergamon, New York, 1970), p. 244

    Google Scholar 

  14. S. Geller, Z. Kristallogr. 125, 1 (1967)

    Article  Google Scholar 

  15. F. Maglia, V. Buscaglia, S. Gennari, P. Ghigna, M. Dapiaggi, A. Speghini, M. Bettinelli, J. Phys. Chem. B 110, 6561 (2006)

    Article  Google Scholar 

  16. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)

    Article  ADS  Google Scholar 

  17. B. Strocka, P. Holst, W. Tolksdorf, Philips J. Res. 33, 186 (1978)

    Google Scholar 

  18. Y.P. Vorobiov, O.V. Carban, J. Solid State Chem. 134, 338 (1997)

    Article  ADS  Google Scholar 

  19. H. Makino, S. Nakamura, K. Matsumi, Jpn. J. Appl. Phys., Part 1 15, 415 (1976)

    Article  Google Scholar 

  20. M. Allibert, C. Chatillo, J. Marescha, F. Lissalde, J. Cryst. Growth 23, 289 (1974)

    Article  ADS  Google Scholar 

  21. C. Milanese, V. Buscaglia, F. Maglia, U. Anselmi-Tamburini, Chem. Mater. 16, 1232 (2004)

    Article  Google Scholar 

  22. A. Nakatsuka, A. Yoshiasa, S. Takeno, Acta Crystallogr. B 51, 737 (1995)

    Article  Google Scholar 

  23. F. Maglia, V. Buscaglia, S. Gennari, P. Ghigna, M. Dapiaggi, A. Speghini, M. Bettinelli, J. Phys. Chem. B 110, 6561 (2006)

    Article  Google Scholar 

  24. A. Masuda, K. Matsuda, Y. Yonezawa, A. Morimoto, T. Shimizu, Mechanism of stoichiometric deposition of volatile elements in multimetal-oxide films prepared by pulsed laser ablation. Jpn J. Appl. Phys. Part 2: Lett. 35, L237–L240 (1996)

    Article  Google Scholar 

  25. P. Papakonstantinou, B. Teggart, R. Atkinson, J. Magn. Magn. Mater. 163, 378 (1996)

    Article  ADS  Google Scholar 

  26. R.J. Cava, A.W. Hewat, E.A. Hewat, B. Batlogg, M. Marezio, K.M. Rabe, J.J. Krajewski, W.F. Peck, L.W. Rupp, Physica C 165, 419 (1990)

    Article  ADS  Google Scholar 

  27. B. Roas, B. Hensel, G. Endres, L. Schultz, S. Klaumunzer, G. Seamann-Ischenko, Physica C 162, 135 (1989)

    Article  ADS  Google Scholar 

  28. R. Gazia, T.C. May-Smith, R.W. Eason, J. Cryst. Growth (2008 accepted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. B. Darby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darby, M.S.B., May-Smith, T.C. & Eason, R.W. Deposition and stoichiometry control of Nd-doped gadolinium gallium garnet thin films by combinatorial pulsed laser deposition using two targets of Nd:Gd3Ga5O12 and Ga2O3 . Appl. Phys. A 93, 477–481 (2008). https://doi.org/10.1007/s00339-008-4810-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4810-x

PACS

Navigation