Skip to main content
Log in

Effect of process parameters and post-deposition annealing on the microwave dielectric and optical properties of pulsed laser deposited Bi1.5Zn1.0Nb1.5O7 thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bismuth Zinc niobate (Bi1.5Zn1.0Nb1.5O7) thin films were deposited by pulsed laser deposition (PLD) method on fused silica substrates at different oxygen pressures. The structural, microwave dielectric and optical properties of these thin films were systematically studied for both the as-deposited and the annealed films at 600°C. The as-deposited films were all amorphous in nature but crystallized on annealing at 600°C in air. The surface morphology as studied by atomic force microscopy (AFM) reveals ultra-fine grains in the case of as-deposited thin films and cluster grain morphology on annealing. The as-deposited films exhibit refractive index in the range of 2.36–2.53 (at a wavelength of 750 nm) with an optical absorption edge value of 3.30–3.52 eV and a maximum dielectric constant of 11 at 12.15 GHz. On annealing the films at 600°C they crystallize to the cubic pyrochlore structure accompanied by an increase in band gap, refractive index and microwave dielectric constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Ren, S. Trolier-McKinstry, C.A. Randall, T.R. Shrout, J. Appl. Phys. 89, 767 (2001)

    Article  ADS  Google Scholar 

  2. H. Wang, X. Yao, J. Mater. Res. 16, 83 (2001)

    Article  ADS  Google Scholar 

  3. A.K. Tagantsev, J. Lu, S. Stemmer, Appl. Phys. Lett. 86, 032901 (2005)

    Article  ADS  Google Scholar 

  4. I.D. Kim, Y.W. Choi, H.L. Tuller, Appl. Phys. Lett. 87, 043509 (2005)

    Article  ADS  Google Scholar 

  5. J. Park, J.W. Lu, D.S. Boesch, S. Stemmer, R.A. York, IEEE Microw. Wirel. Compon. Lett. 16, 264 (2006)

    Article  Google Scholar 

  6. M. Ghanashyam Krishna, J.S. Pillier, A.K. Bhattacharya, Thin Solid Films 357, 218 (1999)

    Article  ADS  Google Scholar 

  7. A. Hartridge, M. Ghanashyam Krishna, A.K. Bhattacharya, J. Phys. Chem. Solids 59, 845 (1998)

    Article  Google Scholar 

  8. M.A. Rzepecka, M.A.K. Hamid, IEEE Trans. Microw. Theory Techn. MTT 20, 30 (1972)

    Article  ADS  Google Scholar 

  9. X. Wang, H. Wang, X. Yao, J. Am. Ceram. Soc. 80, 2745 (1997)

    Google Scholar 

  10. X. Wang, H. Wang, X. Yao, in Proc. 4th Int. Meeting on Electroceramics, Aachen, Germany, vol. 143 (1994)

  11. K. Venkata Saravanan, K. Sudheendran, K.C. James Raju, M. Ghanashyam Krishna, A.K. Bhatnagar, Vacuum 81, 307 (2006)

    Article  Google Scholar 

  12. K. Sudheendran, K.C. James Raju, Ceram. Int. 34, 897 (2008)

    Article  Google Scholar 

  13. J. Park, J. Lu, S. Stemmer, R.A. York, J. Appl. Phys. 97, 084110 (2005)

    Article  ADS  Google Scholar 

  14. R.L. Thayer, C.A. Randall, S. Trolier-Mckinstry, J. Appl. Phys. 94, 1941 (2003)

    Article  ADS  Google Scholar 

  15. X. Gong, W. Han She, E.E. Hoppenjans, Z.N. Wing, R.G. Geyer, J.W. Halloran, W.J. Chappell, IEEE Trans. Microw. Theory Techn. 53, 3638 (2005)

    Article  ADS  Google Scholar 

  16. D. Brassard, M.A. Elkhakni, J. Appl. Phys. 98, 054912 (2005)

    Article  ADS  Google Scholar 

  17. H. Kitahata, K. Tadanaga, T. Minami, N. Fujimura, T. Ito, J. Am. Ceram. Soc. 81, 1357 (1998)

    Article  Google Scholar 

  18. J. Xu, W. Menesklou, E.L. Tiffee, J. Eur. Ceram. Soc. 24, 1735 (2004)

    Article  Google Scholar 

  19. I.P. Koutsaroff, P. Woo, L. McNeil, M. Zelner, A. Kassam, M. Capanu, L. Chmiel, B. McClelland, A. Cervin-Lawry, in Proceedings of the 13th IEEE International Symposium on Applications of Ferroelectrics, Nara, Japan, p. 247 (2002)

  20. T.R. Taylor, P.J. Hanse, B. Acikel, N. Pervez, R.A. York, S.K. Streiffer, J.S. Speck, Appl. Phys. Lett. 80, 1978 (2002)

    Article  ADS  Google Scholar 

  21. Y.M. Tao, Y.Z. Yu, J. Appl. Phys. 101, 024111 (2007)

    Article  ADS  Google Scholar 

  22. J.W. Lu, D.O. Klenov, S. Stemmer, Appl. Phys. Lett. 84, 957 (2004)

    Article  ADS  Google Scholar 

  23. S. Ito, K. Takahashi, S. Okamoto, I.P. Koutsaroff, A. Cervin-Lawry, H. Funakubo, Jpn. J. Appl. Phys. 44, 6881 (2005)

    Article  ADS  Google Scholar 

  24. B. Ngayen, Y. Liu, R.L. Withers, J. Solid State Chem. 180, 549 (2007)

    Article  ADS  Google Scholar 

  25. Levin, T.G. Amos, J.C. Nino, T.A. Vanderah, C.A. Randall, M.T. Lanagan, J. Solid State Chem. 69, 168 (2002)

    Google Scholar 

  26. J.C. Tauc, Optical Properties of Solids (North-Holland, Amsterdam, 1972)

    Google Scholar 

  27. M. Biegalski, R. Thayer, J. Nino, S. Trolier-Mckinstry, in Proc. 13th IEEE Int. Symp. Appl. Ferroelectrics, vol. 7 (2002), p. 10

  28. J.G. Cheng, J. Wang, T. Dechakupt, S. Trolier-Mckinstry, Appl. Phys. Lett. 87, 232905 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghanashyam Krishna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudheendran, K., Ghanashyam Krishna, M. & Raju, K.C.J. Effect of process parameters and post-deposition annealing on the microwave dielectric and optical properties of pulsed laser deposited Bi1.5Zn1.0Nb1.5O7 thin films. Appl. Phys. A 95, 485–492 (2009). https://doi.org/10.1007/s00339-008-4924-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4924-1

PACS

Navigation