Skip to main content
Log in

3D polycarprolactone (PCL) scaffold with hierarchical structure fabricated by a piezoelectric transducer (PZT)-assisted bioplotter

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The 3D bioplotter, which is one of the rapid-prototyping systems, enables us to produce the design-based scaffolds which could control good mechanical properties and pore structures for mimicking human organs. Although the plotting system has several advantages to fabricate a variety of designed scaffolds, the main disadvantage of scaffolds fabricated by the system is that the strand surfaces are too smooth and tend to discourage initial cell attachment within the scaffolds. To overcome the problem, we suggest a new 3D plotting method supplemented by piezoelectric vibration system for fabricating scaffolds that have hierarchical surface structures, which increase the surface roughness of the scaffold without any additional chemical process. The surface-modified 3D scaffold exhibited various positive qualities including enhanced compressive modulus and improved initial cell attachment and proliferation. Cell culturing results demonstrated that the interactions between chondrocytes and the scaffold were much more favorable than those between the cells and conventionally plotted 3D scaffolds. This process provides a feasible new technique for fabricating high-quality 3D scaffolds for tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.J. Buckley, K.U. O’Kelly, Regular scaffold fabrication technique for investigations in tissue engineering, in Topics in Bio-Mechanical Engineering, ed. by P.J. Prendergast, P.E. McHugh (Trinity Centre for Bioengineering, Dublin, 2004), pp. 147–166

    Google Scholar 

  2. K.C. Shin, B.S. Kim, J.H. Kim, T.G. Park, J.D. Nam, D.S. Lee, Polymer 46, 3801 (2005)

    Article  Google Scholar 

  3. M. Mathieu, T.L. Mueller, P.-E. Bourban, D.P. Pioletti, R. Muller, J.A.E. Manson, Biomaterials 27, 905 (2006)

    Article  Google Scholar 

  4. S. Oh, S.G. Kang, E.S. Kim, S.H. Cho, J.H. Lee, Biomaterials 24, 4011 (2003)

    Article  Google Scholar 

  5. K. Whang, C.H. Thomas, K.E. Healy, Polymer 36, 837 (1995)

    Article  Google Scholar 

  6. W.-Y. Yeong, C.-K. Chua, K.-F. Leong, M. Chandrasekaran, Trends Biotech. 22, 643–652 (2004)

    Article  Google Scholar 

  7. E. Sachlos, J.T. Czernuszka, Eur. Cells Mater. 5, 29–40 (2003)

    Google Scholar 

  8. D.W. Hutmacher, Biomaterials 21, 2529 (2000)

    Article  Google Scholar 

  9. D.W. Hutmacher, M. Sittinger, M.V. Risbud, Trends Biotech. 22, 354–362 (2004)

    Article  Google Scholar 

  10. R. Landers, A. Pfister, U. Hubner, H. John, R. Schmelzeisen, R. Mulhaupt, J. Mater. Sci. 37, 3107 (2002)

    Article  Google Scholar 

  11. R. Landers, U. Hübner, R. Schmelzeisen, Biomaterials 23, 4437–4447 (2002)

    Article  Google Scholar 

  12. S.G. Hollister, R.D. Maddox, J.M. Taboas, Biomaterials 23, 4095 (2002)

    Article  Google Scholar 

  13. S.J. Hollister, Nat. Mater. 4, 518–524 (2005)

    Article  ADS  Google Scholar 

  14. R. Mülhaupt, R. Landers, Y. Thomann, Eur. Cells Mater. 6 (Suppl. 1) (2003)

  15. B.F. Woodfield, J. Malda, J. de Wijn, F. Péters, J. Riesle, C.A. van Blitterswijk, Biomaterials 25, 4149–4161 (2004)

    Article  Google Scholar 

  16. A. Thapa, D.C. Miller, T.J. Webster, K.M. Haberstroh, Biomaterials 24, 2915–2926 (2003)

    Article  Google Scholar 

  17. Y. Wan, Y. Wang, Z. Liu, X. Qu, B. Han, J. Bei, S. Wang, Biomaterials 26, 4453 (2005)

    Article  Google Scholar 

  18. C.C. Berry, G. Campbell, A. Spadiccino, M. Robertson, A. Curtis, Biomaterials 25, 5781 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geun Hyung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, G.H., Son, J.G. 3D polycarprolactone (PCL) scaffold with hierarchical structure fabricated by a piezoelectric transducer (PZT)-assisted bioplotter. Appl. Phys. A 94, 781–785 (2009). https://doi.org/10.1007/s00339-008-4959-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4959-3

PACS

Navigation