Skip to main content
Log in

ZnO–CuO core–shell nanorods and CuO-nanoparticle–ZnO-nanorod integrated structures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnO–CuO core–shell nanorods and CuO-nanoparticle–ZnO-nanorod integrated structures were synthesized for the first time by a two-stage solution process. Scanning electron microscopy and high-resolution transmission electron microscopy show that the diameter and the length of the nanorods are around 60 and 800 nm, respectively. The morphologies of outer CuO could be varied from nanoparticles to nanoshells by adjusting the solvent and dipping processes of copper (II) nitrate solution. The CuO nanoparticles are single-crystalline or highly textured structures with size of around 30 nm. The CuO shell with thickness of around 10 nm is constructed of nanocrystals with sizes in the range of 3–10 nm embedded in an amorphous matrix. Room-temperature cathodoluminescence measurements of the CuO–ZnO nanocomposites exhibit relatively sharp ultraviolet emissions at 380 nm as well as broad green and yellow emissions at 500 and 585 nm. The p-CuO/n-ZnO one-dimensional nanocomposites are promising for optoelectronic nanodevice applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. Wang, C.P. Liu, J.L. Huang, S.J. Chen, Y.K. Tseng, S.C. Kung, Appl. Phys. Lett. 87, 013110 (2005)

    Article  ADS  Google Scholar 

  2. R.C. Wang, C.P. Liu, J.L. Huang, S.J. Chen, Nanotechnology 17, 753 (2006)

    Article  ADS  Google Scholar 

  3. M.S. Hu, H.L. Chen, C.H. Shen, L.S. Hong, B.R. Huang, K.H. Chen, L.C. Chen, Nat. Mater. 5, 102 (2006)

    Article  ADS  Google Scholar 

  4. Y.H. Park, Y.H. Shin, S.J. Noh, Y. Kim, S.S. Lee, C.G. Kim, K.S. An, C.Y. Park, Appl. Phys. Lett. 91, 012102 (2007)

    Article  ADS  Google Scholar 

  5. J.P. Richters, T. Voss, D.S. Kim, R. Scholz, M. Zacharias, Nanotechnology 19, 305202 (2008)

    Article  Google Scholar 

  6. C.L. Kuo, R.C. Wang, J.L. Huang, C.P. Liu, Y.F. Lai, C.Y. Wang, H.C. Chung, Nanotechnology 19, 285703 (2008)

    Article  Google Scholar 

  7. M.T. Bjork, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg, L. Samuelson, Nano Lett. 2, 87 (2002)

    Article  Google Scholar 

  8. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Nature 449, 885 (2007)

    Article  ADS  Google Scholar 

  9. B.M. Kayes, H.A. Atwater, N.S. Lewis, J. Appl. Phys. 97, 114302 (2005)

    Article  ADS  Google Scholar 

  10. T.J. Hsueh, C.L. Hsu, S.J. Chang, P.W. Guo, J.H. Hsieh, I.C. Chen, Scr. Mater. 57, 53 (2007)

    Article  Google Scholar 

  11. I.V. Morozov, K.O. Znamenkov, Y.M. Korenev, O.A. Shlyakhtin, Thermochim. Acta 403, 173 (2003)

    Article  Google Scholar 

  12. K. Vanhausden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)

    Article  ADS  Google Scholar 

  13. Z. Chen, N. Wu, Z. Shan, M. Zhao, S. Li, C.B. Jiang, M.K. Chyu, S.X. Mao, Scr. Mater. 52, 63 (2005)

    Article  Google Scholar 

  14. H.T. Ng, B. Chen, J. Li, J. Han, M. Meyyappan, J. Wu, S.X. Li, E.E. Haller, Appl. Phys. Lett. 82, 2023 (2003)

    Article  ADS  Google Scholar 

  15. Y.Q. Chen, J. Jiang, Z.Y. He, Y. Su, D. Cai, L. Chen, Mater. Lett. 59, 3280 (2005)

    Article  Google Scholar 

  16. Y.W. Heo, D.P. Norton, S.J. Pearton, J. Appl. Phys. 98, 073502 (2005)

    Article  ADS  Google Scholar 

  17. Q.X. Zhao, P. Klason, M. Willander, H.M. Zhong, W. Lu, J.H. Yang, Appl. Phys. Lett. 87, 211912 (2005)

    Article  ADS  Google Scholar 

  18. X. Liu, X. Wu, H. Cao, R.P.H. Chang, J. Appl. Phys. 95, 3141 (2004)

    Article  ADS  Google Scholar 

  19. A.B. Djurišić, W.C.H. Choy, V.A.L. Roy, Y.H. Leung, C.Y. Kwong, K.W. Cheah, T.K. Gundu Rao, W.K. Chan, H.F. Lui, C. Surya, Adv. Funct. Mater. 14, 856 (2004)

    Article  Google Scholar 

  20. N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, G. Cantwell, Appl. Phys. Lett. 81, 622 (2002)

    Article  ADS  Google Scholar 

  21. C.X. Xu, X.W. Sun, X.H. Zhang, L. Ke, S.J. Chua, Nanotechnology 15, 856 (2004)

    Article  ADS  Google Scholar 

  22. L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, P. Yang, Angew. Chem. 42, 3031 (2003)

    Article  Google Scholar 

  23. F. Wen, W. Li, J.H. Moon, J.H. Kim, Solid State Commun. 135, 34 (2005)

    Article  ADS  Google Scholar 

  24. D. Li, Y.H. Leung, A.B. Djurišić, Z.T. Liu, M.H. Xie, S.L. Shi, S.J. Xu, W.K. Chan, Appl. Phys. Lett. 85, 1601 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruey-Chi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, RC., Lin, HY. ZnO–CuO core–shell nanorods and CuO-nanoparticle–ZnO-nanorod integrated structures. Appl. Phys. A 95, 813–818 (2009). https://doi.org/10.1007/s00339-009-5079-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5079-4

PACS

Navigation