Skip to main content
Log in

Structural and electronic implications for carrier injection into organic semiconductors

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report on the structural and electronic interface formation between ITO (indium-tin-oxide) and prototypical organic small molecular semiconductors, i.e., CuPc (copper phthalocyanine) and α-NPD (N,N′-di(naphtalen-1-yl)-N,N′-diphenyl-benzidine). In particular, the effects of in situ oxygen plasma pretreatment of the ITO surface on interface properties are examined in detail: Organic layer-thickness dependent Kelvin probe measurements revealed a good alignment of the ITO work function and the highest occupied electronic level of the organic material in all samples. In contrast, the electrical properties of hole-only and bipolar organic diodes depend strongly on the treatment of ITO prior to organic deposition. This dependence is more pronounced for diodes made of polycrystalline CuPc than for those of amorphous α-NPD layers. X-ray diffraction and atomic force microscopic (AFM) investigations of CuPc nucleation and growth evidenced a more pronounced texture of the polycrystalline film structure on the ITO substrate that was oxygen plasma treated prior to organic layer deposition. These findings suggest that the anisotropic electrical properties of CuPc crystallites, and their orientation with respect to the substrate, strongly affect the charge carrier injection and transport properties at the anode interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.W. Tang, S.A. Van Slyke, Appl. Phys. Lett. 51, 913 (1987)

    Article  ADS  Google Scholar 

  2. S.A. Van Slyke, C.H. Chen, C.W. Tang, Appl. Phys. Lett. 69, 2160 (1996)

    Article  ADS  Google Scholar 

  3. F. Nüesch, L. Si-Ahmed, B. François, L. Zuppiroli, Adv. Mater. 9, 222 (1997)

    Article  Google Scholar 

  4. M. Castellani, D. Berner, J. Appl. Phys. 102, 024509 (2007)

    Article  ADS  Google Scholar 

  5. I.G. Hill, A. Kahn, J. Appl. Phys. 86, 2116 (1999)

    Article  ADS  Google Scholar 

  6. F. Nüesch, M. Carrara, L. Zuppiroli, Langmuir 19, 4871 (2003)

    Article  Google Scholar 

  7. L. Zuppiroli, L. Si-Ahmed, K. Kamaras, F. Nüesch, M.N. Bussac, D. Ades, A. Siove, E. Moons, M. Grätzel, Eur. Phys. J. B 11, 505 (1999)

    Article  ADS  Google Scholar 

  8. C.C. Wu, C.I. Wu, J.C. Sturm, A. Kahn, Appl. Phys. Lett. 70, 1348 (1997)

    Article  ADS  Google Scholar 

  9. T. Osada, T. Kugler, P. Broms, W.R. Salaneck, Synth. Met. 96, 77 (1998)

    Article  Google Scholar 

  10. J.S. Kim, M. Granström, R.H. Friend, N. Johansson, W.R. Salaneck, R. Daik, W.J. Feast, J. Appl. Phys. 84, 6859 (1998)

    Article  ADS  Google Scholar 

  11. F. Nüesch, K. Kamaras, L. Zuppiroli, Chem. Phys. Lett. 283, 194 (1998)

    Article  Google Scholar 

  12. D.J. Milliron, I.G. Hill, C. Shen, A. Kahn, J. Schwartz, J. Appl. Phys. 87, 572 (2000)

    Article  ADS  Google Scholar 

  13. M.G. Mason, L.S. Hung, C.W. Tang, S.T. Lee, K.W. Wong, M. Wang, J. Appl. Phys. 86, 1688 (1999)

    Article  ADS  Google Scholar 

  14. I.H. Campbell, D.L. Smith, Appl. Phys. Lett. 74, 561 (1999)

    Article  ADS  Google Scholar 

  15. A. Crispin, X. Crispin, M. Fahlman, M. Berggren, W.R. Salaneck, Appl. Phys. Lett. 89, 213503 (2006)

    Article  ADS  Google Scholar 

  16. N. Koch, A. Vollmer, Appl. Phys. Lett. 89, 162107 (2006)

    Article  ADS  Google Scholar 

  17. E. Tutiš, M.N. Bussac, L. Zuppiroli, Appl. Phys. Lett. 75, 3880 (1999)

    Article  ADS  Google Scholar 

  18. T. Chassé, C.I. Wu, I.G. Hill, A. Kahn, J. Appl. Phys. 85, 6589 (1999)

    Article  ADS  Google Scholar 

  19. W. Chen, H. Huang, S. Chen, Y.L. Huang, X.Y. Gao, A.T.S. Wee, Chem. Mater. 20, 7017 (2008)

    Article  Google Scholar 

  20. H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater. 11, 605 (1999)

    Article  Google Scholar 

  21. A. Kahn, N. Koch, W.Y. Gao, J. Polym. Sci. B 41, 2529 (2003)

    Article  Google Scholar 

  22. F. Nüesch, M. Carrara, M. Schaer, D.B. Romero, L. Zuppiroli, Chem. Phys. Lett. 347, 311 (2001)

    Article  Google Scholar 

  23. P. Erk, H. Hengelsberg, M.F. Haddow, R. van Gelder, Cryst. Eng. Commun. 6, 474 (2004)

    Google Scholar 

  24. A. Hoshino, Y. Takenaka, H. Miyaji, Acta Crystallogr. B 59, 393 (2003)

    Article  Google Scholar 

  25. P. Scherrer, Nachr. Ges. Wiss. Gött. Math.-Phys. Kl. 2, 98 (1918)

    Google Scholar 

  26. S.N. Luo, A. Kono, N. Nouchi, F. Shoji, J. Appl. Phys. 100, 113701 (2006)

    Article  ADS  Google Scholar 

  27. A. von Mühlenen, M. Castellani, M. Schaer, L. Zuppiroli, Phys. Stat. Sol. B 245, 1170 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Castellani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castellani, M., Salzmann, I., Bugnon, P. et al. Structural and electronic implications for carrier injection into organic semiconductors. Appl. Phys. A 97, 1–9 (2009). https://doi.org/10.1007/s00339-009-5336-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5336-6

PACS

Navigation