Skip to main content
Log in

Synthesis and piezoelectric properties of well-aligned ZnO nanowire arrays via a simple solution-phase approach

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An effective, low cost and catalyst-free solution-phase approach was demonstrated for achieving a tailored length and controlled surface-to-volume ratio of aligned ZnO nanowire (NW) arrays. By a slight variation of the solution concentration and growth time, significant changes in length and surface-to-volume ratio of the obtained ZnO NW arrays have been controlled, respectively. The morphology and microstructure of the synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Also the growth mechanism was discussed. For the study of the piezoelectric property of aligned ZnO NW arrays, some measuring models of nanogenerators (NGs) were fabricated with two pieces of grown ZnO NW array structures stacking together and penetrating into each other. One of the pieces was coated with Au film as the conductive nanotip (NTP) array. The NG was driven by an ultrasonic wave. The piezoelectric output current was gained and characteristic curves have been illustrated for different measuring results. The curves show that increasing the length and surface-to-volume ratios of ZnO NW arrays can enhance the output power of the NGs, respectively. It can be seen that the NGs fabricated with size-controlled ZnO NW arrays provide a feasible technology for building high-power output or power-controlled NGs for applications where a smaller size or appointed power output NGs are required. However, no relationship was found between the piezoelectric current output and the driving frequency of ultrasonic waves from 10 to 50 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Wang, J. Song, J. Liu, Z.L. Wang, Science 316, 102 (2007)

    Article  ADS  Google Scholar 

  2. Z.L. Wang, J.H. Song, Science 312, 242 (2006)

    Article  ADS  Google Scholar 

  3. Z.L. Wang, Adv. Funct. Mater. 18, 1 (2008)

    Google Scholar 

  4. X.D. Wang, J. Liu, J.H. Song, Z.L. Wang, Nano Lett. 7, 2475 (2007)

    Article  ADS  Google Scholar 

  5. X.F. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Nature 421, 241 (2003)

    Article  ADS  Google Scholar 

  6. G.F. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber, Nat. Biotechnol. 23(10), 1294 (2005)

    Article  Google Scholar 

  7. X.D. Bai, P.X. Gao, Z.L. Wang, E.G. Wang, Appl. Phys. Lett. 82, 4806 (2003)

    Article  ADS  Google Scholar 

  8. J.H. Song, J. Zhou, Z.L. Wang, Nano Lett. 6, 1656 (2006)

    Article  ADS  Google Scholar 

  9. S. Xu, Y.G. Wei, J. Liu, R.S. Yang, Z.L. Wang, Nano Lett. 8(11), 4027 (2008)

    Article  ADS  Google Scholar 

  10. Y.F. Zhang, R.E. Russo, S.S. Mao, Appl. Phys. Lett. 87, 133115 (2005)

    Article  ADS  Google Scholar 

  11. F. Li, Z. Li, F.J. Jin, Physica B 403, 664 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  12. X.F. Duan, C.M. Lieber, Adv. Mater. 12, 298 (2000)

    Article  Google Scholar 

  13. B.Q. Cao, X.M. Teng, H.H. Sung, Y. Li, O.C. Sung, G.H. Li, W.P. Cai, J. Phys. Chem. C 111, 2470 (2007)

    Google Scholar 

  14. S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang, S.J. Chua, J. Appl. Phys. 98, 13505 (2005)

    Article  ADS  Google Scholar 

  15. M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292, 1897 (2001)

    Article  ADS  Google Scholar 

  16. M.H. Huang, Y.Y. Wu, H. Feick, N. Tran, E. Weber, P.D. Yang, Adv. Mater. 13(2), 113 (2001)

    Article  Google Scholar 

  17. L. Vayssieres, K. Keis, S.-E. Lindquist, A. Hagfeldt, J. Phys. Chem. B 105, 3350 (2001)

    Article  Google Scholar 

  18. L. Vayssieres, K. Keis, A. Hagfeldt, S.-E. Lindquist, Chem. Mater. 13(12), 4395 (2001)

    Article  Google Scholar 

  19. X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, D. Zhu, J. Am. Chem. Soc. 126, 62 (2004)

    Article  Google Scholar 

  20. H.Q. Yang, Y.Z. Song, L. Li, J.H. Ma, D.C. Chen, S.L. Mai, H. Zhao, Cryst. Growth Des. 8(3), 1039 (2008)

    Article  Google Scholar 

  21. P.X. Gao, J.H. Song, J. Liu, Z.L. Wang, Adv. Mater. 19, 67 (2007)

    Article  Google Scholar 

  22. J.H. Song, X.D. Wang, E. Riedo, Z.L. Wang, Nano Lett. 5(10), 1954 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Li, M.K., Yu, L.Y. et al. Synthesis and piezoelectric properties of well-aligned ZnO nanowire arrays via a simple solution-phase approach. Appl. Phys. A 97, 869–876 (2009). https://doi.org/10.1007/s00339-009-5348-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5348-2

PACS

Navigation