Skip to main content
Log in

The effects of deposition temperature and ambient on the physical and electrical performance of DC-sputtered n-ZnO/p-Si heterojunction

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effects of deposition conditions on the physical and electrical performance of the n-ZnO/p-Si heterojunction were systematically investigated. ZnO films were deposited on the Si and glass substrates using direct current (DC) magnetron sputtering with various ambients and substrate temperatures. The results showed that increasing the O2 content and substrate temperature during the deposition process could improve the crystallinity and stoichiometry of the ZnO film, resulting in a lower carrier concentration and higher resistivity. The electrical properties of the n-ZnO/p-Si heterojunctions were also affected by the deposition parameters. For the junctions fabricated in the pure Ar ambient, the sample deposited at room temperature (RT) showed Ohmic behavior, while the one deposited at 300 °C exhibited poor rectifying behavior. On the other hand, the junctions fabricated in the O2/Ar ambient possessed ideal rectifying behaviors. The different carrier transport mechanisms for the heterojunctions under forward and reverse bias were systematically studied using a high temperature current–voltage (I-V) measurement. The recombination-tunneling current showed temperature insensitive performance while the space-charge limited current (SCLC) changed with the measurement temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Ozgur, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  2. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, J. Vac. Sci. Technol. B 22, 932 (2004)

    Article  Google Scholar 

  3. M. Hiramatsu, K. Imawda, N. Horio, M. Nawata, J. Vac. Sci. Technol. A 16, 669 (1998)

    Article  ADS  Google Scholar 

  4. S.Y. Liu, T. Chen, Y.L. Jiang, G.P. Ru, X.P. Qu, J. Appl. Phys. 105, 114504 (2009)

    Article  ADS  Google Scholar 

  5. W.I. Park, G.C. Yi, Adv. Mater. 16, 87 (2004)

    Article  Google Scholar 

  6. Ya.I. Alivov, E.V. Kalinina, A.E. Cherenkov, D.C. Look, B.M. Ataev, A.K. Omaev, M.V. Chukichev, D.M. Bagnall, Appl. Phys. Lett. 83, 4719 (2003)

    Article  ADS  Google Scholar 

  7. C. Yuen, S.F. Yu, S.P.L. Rusli, T.P. Chen, Appl. Phys. Lett. 86, 241111 (2005)

    Article  ADS  Google Scholar 

  8. D.M. Nanditha, M. Dissanayake, R.A. Hatton, R.J. Curry, S.R.P. Silva, Appl. Phys. Lett. 90, 113505 (2007)

    Article  ADS  Google Scholar 

  9. I.S. Jeong, J.H. Kim, S. Im, Appl. Phys. Lett. 83, 2946 (2003)

    Article  ADS  Google Scholar 

  10. Y.S. Choi, J.Y. Lee, S. Im, S.J. Lee, J. Vac. Sci. Technol. B 20, 2384 (2002)

    Article  Google Scholar 

  11. P.L. Chen, X.Y. Ma, D.R. Yang, J. Appl. Phys. 101, 053103 (2007)

    Article  ADS  Google Scholar 

  12. J.W. Sun, Y.M. Lu, Y.C. Liu, D.Z. Shen, Z.Z. Zhang, B.H. Li, J.Y. Zhang, B. Yao, D.X. Zhao, X.W. Fan, J. Phys. D: Appl. Phys. 41, 155103 (2008)

    Article  ADS  Google Scholar 

  13. J.D. Ye, S.L. Gu, S.M. Zhu, W. Liu, S.M. Liu, R. Zhang, Y. Shi, Y.D. Zheng, Appl. Phys. Lett. 88, 182112 (2006)

    Article  ADS  Google Scholar 

  14. R.S. Ajinsha, M.K. Jayaraj, L.M. Kukreja, J. Electron. Mater. 37, 770 (2008)

    Article  ADS  Google Scholar 

  15. M. Suchea, S. Christoulakis, N. Katsarakis, T. Kitsopoulos, G. Kiriakidis, Thin Solid Films 515, 6562 (2007)

    Article  ADS  Google Scholar 

  16. S. Jeong, B. Kim, B. Lee, Appl. Phys. Lett. 82, 2625 (2003)

    Article  ADS  Google Scholar 

  17. H.K. Kim, M. Mathur, J. Electron. Mater. 22, 267 (1993)

    Article  ADS  Google Scholar 

  18. R. Menon, K. Sreenivas, V. Gupta, J. Appl. Phys. 103, 094903 (2008)

    Article  ADS  Google Scholar 

  19. J.G. Lu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, L. Wang, J. Yuan, B.H. Zhao, J. Appl. Phys. 100, 073714 (2006)

    Article  ADS  Google Scholar 

  20. B.J. Coppa, R.F. Davis, R.J. Nemanich, Appl. Phys. Lett. 82(3), 400 (2003)

    Article  ADS  Google Scholar 

  21. L.W. Lai, C.T. Lee, Mater. Chem. Phys. 110, 393 (2008)

    Article  Google Scholar 

  22. M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, Appl. Surf. Sci. 158, 134 (2000)

    Article  ADS  Google Scholar 

  23. S.J. Kang, Y.H. Joung, H.H. Shin, Y.S. Yoon, J. Mater. Sci.: Mater. Electron. 19, 1073 (2008)

    Article  Google Scholar 

  24. M. Dutta, D. Basak, Appl. Phys. Lett. 92, 212112 (2008)

    Article  ADS  Google Scholar 

  25. A. Rose, Phys. Rev. 97, 1538 (1955)

    Article  ADS  Google Scholar 

  26. J.B. Fedison, T.P. Chow, H. Lu, I.B. Bhat, Appl. Phys. Lett. 72, 2841 (1998)

    Article  ADS  Google Scholar 

  27. M. Ahmetoglu, Thin Solid Films 516, 1227 (2008)

    Article  ADS  Google Scholar 

  28. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  29. R. Ghosh, D. Basak, Appl. Phys. Lett. 90, 243106 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Ping Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, T., Liu, SY., Xie, Q. et al. The effects of deposition temperature and ambient on the physical and electrical performance of DC-sputtered n-ZnO/p-Si heterojunction. Appl. Phys. A 98, 357–365 (2010). https://doi.org/10.1007/s00339-009-5386-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5386-9

PACS

Navigation