Skip to main content
Log in

A thin membrane artificial muscle rotary motor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Desirable rotary motor attributes for robotics include the ability to develop high torque in a low mass body and to generate peak power at low rotational speeds. Electro-active polymer artificial muscles offer promise as actuator elements for robotic motors. A promising artificial muscle technology for use as a driving mechanism for rotary motion is the dielectric elastomer actuator (DEA). We present a membrane DEA motor in which phased actuation of electroded sectors of the motor membrane impart orbital motion to a central drive that turns a rotor. The motor is inherently scalable, flexible, flat, silent in operation, amenable to deposition-based manufacturing approaches, and uses relatively inexpensive materials. As a membrane it can also form part of the skin of a robot.

We have investigated the torque and power of stacked membrane layers. Specific power and torque ratios when calculated using active membrane mass only were 20.8 W/kg and 4.1 Nm/kg, respectively. These numbers compare favorably with a commercially available stepper motor.

Multi-membrane fabrication substantially boosts torque and power and increases the active mass of membrane relative to supporting framework. Through finite element modeling, we show the mechanisms governing the maximum torque the device can generate and how the motor can be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Madden, Mobile robots: motor challenges and materials solutions. Science 318, 1094–1097 (2007)

    Article  ADS  Google Scholar 

  2. J.D. Madden, N.A. Vandesteeg, P.A. Anquetil, P.G.A. Madden, A. Takshi, R.Z. Pytel, S.R. Lafontaine, P.A. Wieringa, I.W. Hunter, Artificial muscle technology: physical principals and naval prospects. IEEE J. Oceanic Eng. 29(3), 706–728 (2004)

    Article  Google Scholar 

  3. Y. Bar-Cohen (ed.), Electroactive Polymer (EAP) Actuators as Artificial Muscles, Reality, Potential and Challenges (SPIE Press, Bellingham, 2004)

    Google Scholar 

  4. G. Kofod, Dielectric elastomer actuators. Ph.D. Thesis, Department of Chemistry, The Technical University of Denmark, 2001

  5. R. Kornbluh, R. Pelrine, J. Eckerle, J. Joseph, Electrostrictive polymer artificial muscle actuators, in IEEE International Conference on Robotics and Automation, Lueven, Belgium (1998)

  6. I.A. Anderson, E.P. Calius, T. Gisby, T. Hale, T. McKay, B. O’Brien, S. Walbran, A dielectric elastomer actuator thin membrane rotary motor, in Electroactive Polymer Actuators and Devices (EAPAD) 2009, vol. 7287/1, San Diego (2009)

  7. B. O’Brien, E.P. Calius, S. Xie, T. McKay, I.A. Anderson, Finite element modeling of dielectric elastomer minimum energy structures. J. Appl. Phys. A 94, 507–514 (2008)

    Article  Google Scholar 

  8. M. Wissler, E. Mazza, Electromechanical coupling in dielectric elastomer actuators. Sens. Actuators A Phys. 138, 384–93 (2007)

    Article  Google Scholar 

  9. M. Wissler, E. Mazza, Mechanical behavior of an acrylic elastomer used in dielectric elastomer actuators. Sens. Actuators A Phys. 134, 494–504 (2007)

    Article  Google Scholar 

  10. C. Keplinger, M. Kaltenbrunner, N. Arnold, S. Bauer, Capacitive extensometry for transient strain analysis of dielectric elastomer actuators. Appl. Phys. Lett. 92, 192903 (2008). doi:10.1063/1.2929383

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain A. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, I.A., Hale, T., Gisby, T. et al. A thin membrane artificial muscle rotary motor. Appl. Phys. A 98, 75 (2010). https://doi.org/10.1007/s00339-009-5434-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-009-5434-5

PACS

Navigation