Skip to main content
Log in

Inverse magnetocaloric effect in sol–gel derived nanosized cobalt ferrite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The magnetocaloric properties of cobalt ferrite nanoparticles were investigated to evaluate the potential of these materials as magnetic refrigerants. Nanosized cobalt ferrites were synthesized by the method of sol–gel combustion. The nanoparticles were found to be spherical with an average crystallite size of 14 nm. The magnetic entropy change (ΔS m) calculated indirectly from magnetization isotherms in the temperature region 170–320 K was found to be negative, signifying an inverse magnetocaloric effect in the nanoparticles. The magnitudes of the ΔS m values were found to be larger when compared to the reported values in the literature for the corresponding ferrite materials in the nanoregime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Warburg, Ann. Phys. 13, 141 (1881)

    Article  Google Scholar 

  2. W.F. Giaque, J. Am. Chem. Soc. 49, 107B309864 (1927)

    Google Scholar 

  3. K.A. Gschneidner Jr., H. Takeya, J.O. Moorman, V.K. Pecharsky, S.K. Malik, C.B. Zimm, Adv. Cryog. Eng. 39, 1457 (1997)

    Google Scholar 

  4. V.K. Pecharsky, K.A. Gschneidner Jr., Appl. Phys. Lett. 70, 3299 (1997)

    Article  ADS  Google Scholar 

  5. M.P. Annaorazov, M. Ünal, S.A. Nikitin, A.L. Tyurin, K.A. Asatryan, J. Magn. Magn. Mater. 251, 61 (2002)

    Article  ADS  Google Scholar 

  6. K.A. Gschneidner Jr., V.K. Pecharsky, C.B. Zimm, in Proc. 50th Annu. Int. Appliance Technical Conf., West Lafayette, IN, 10–12 May 1999, p. 144

  7. S.E. Lyshevski, MEMS and NEMS: Systems, Devices, and Structures (CRC Press, Boca Raton, 2002)

    Google Scholar 

  8. E. Brück, J. Phys. D, Appl. Phys. 38, R381 (2005)

    Article  ADS  Google Scholar 

  9. V.K. Pecharsky, K.A. Gschneidner Jr., Phys. Rev. Lett. 78, 4494 (1997)

    Article  ADS  Google Scholar 

  10. V.K. Pecharsky, K.A. Gschneidner Jr., Appl. Phys. Lett. 70, 3299 (1997)

    Article  ADS  Google Scholar 

  11. Z.B. Guo, W. Yang, Y.T. Shen, Y.W. Du, Appl. Phys. Lett. 70, 904 (1997)

    Article  ADS  Google Scholar 

  12. F.X. Hu, B.G. Shen, J.R. Sun, G.H. Wu, Phys. Rev. B 64, 132412 (2001)

    Article  ADS  Google Scholar 

  13. H. Wada, Y. Tanabe, Appl. Phys. Lett. 79, 3302 (2001)

    Article  ADS  Google Scholar 

  14. S. Hariharan, J. Gass, Rev. Adv. Mater. Sci. 10, 398 (2005)

    Google Scholar 

  15. D. Peddis, C. Cannas, A. Musinu, G. Piccaluga, J. Phys. Chem. C 112, 5141 (2008)

    Article  Google Scholar 

  16. P. Poddar, J. Gass, D. Rebar, S. Srinath, H. Srikanth, S.A. Morrison, E.E. Carpenter, J. Magn. Magn. Mater. 307, 227 (2006)

    Article  ADS  Google Scholar 

  17. P. Jeppson, R. Sailer, E. Jarabek, J. Sandstrom, B. Anderson, M. Bremer, D.G. Grier, D.L. Schulz, A.N. Caruso, S.A. Payne, P. Eames, M. Tondra, J. Appl. Phys. 100, 114324 (2006)

    Article  ADS  Google Scholar 

  18. M. Veverka, P. Veverka, O. Kaman, A. Lančok, K. Závěta, E. Pollert, K. Knížek, J. Boháček, M. Beneš, P. Kašpar, E. Duguet, S. Vasseur, Nanotechnology 18, 345704 (2007)

    Article  Google Scholar 

  19. F. Figueiredo, A.C. Tedesco, P.C. Morais, J. Appl. Phys. 93, 6707 (2003)

    Article  ADS  Google Scholar 

  20. C. Vázquez-Vázquez, M. Lovelle, C. Mateo, M.A. López-Quintela, M.C. Buján-Núñez, D. Serantes, D. Baldomir, J. Rivas, Phys. Status Solidi A 205, 1358 (2008)

    Article  ADS  Google Scholar 

  21. A.H. Morrish, The Physical Principles of Magnetism (Wiley, New York, 1965), Chap. 3

    Google Scholar 

  22. K.A. Gschneidner Jr., V.K. Pecharsky, Mater. Sci. Eng. A 287, 301 (2000)

    Article  Google Scholar 

  23. K.A. Gschneidner Jr., V.K. Pecharsky, Annu. Rev. Mater. Sci. 30, 387 (2000)

    Article  ADS  Google Scholar 

  24. B. Vishwanathan, V.R.K. Moorthy, Ferrite Materials: Science and Technology (Springer, Berlin, 1960)

    Google Scholar 

  25. B.G. Toksha, S.E. Shrisath, S.M. Patange, K.M. Jadhav, Solid State Commun. 147, 479 (2008)

    Article  ADS  Google Scholar 

  26. C.N. Chinnasamy, B. Jeyadevan, K. Shinoda, K. Tohji, D.J. Djayaprawira, M. Takahashi, Appl. Phys. Lett. 83, 2862 (2003)

    Article  ADS  Google Scholar 

  27. E.C. Stoner, E.P. Wohlfarth, Philos. Trans. R. Soc. A 240, 599 (1948)

    Article  MATH  ADS  Google Scholar 

  28. T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, Nat. Mater. 4, 450 (2005)

    Article  ADS  Google Scholar 

  29. A.K. Nayak, K.G. Suresh, A.K. Nigam, J. Phys. D, Appl. Phys. 42, 035009 (2009)

    Article  ADS  Google Scholar 

  30. J. Gass, H. Srikanth, N. Kislov, S.S. Srinivasan, Y. Emirov, J. Appl. Phys. 103, 07B309 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Anantharaman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopalan, E.V., Al-Omari, I.A., Kumar, D.S. et al. Inverse magnetocaloric effect in sol–gel derived nanosized cobalt ferrite. Appl. Phys. A 99, 497–503 (2010). https://doi.org/10.1007/s00339-010-5573-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5573-8

Keywords

Navigation