Skip to main content
Log in

Room-temperature ferromagnetism in lightly Cr-doped ZnO nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Zn1−x Cr x O (0≤x≤0.15) nanoparticles were synthesized by an auto-combustion method and characterized by x-ray diffraction and Raman scattering techniques. The solubility limit for Cr in ZnO was determined as x≈0.03. Room-temperature ferromagnetism (RT-FM) was observed in lightly Cr-doped ZnO nanoparticles with x=0.01 and 0.02. Raman scattering spectra of the lightly Cr-doped and Co-doped ZnO were studied and compared. The enhancement of both the magnetization and the intensity of Raman scattering peak associated with donor defects (Zni and/or VO) and carriers indicates that light Cr doping in ZnO could be an effective way to achieve pronounced RT-FM and the ferromagnetism is closely related to the dopant-donor hybridization besides the ferromagnetic Cr–O–Cr superexchange interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  2. K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys. 39, L555 (2000)

    Article  ADS  Google Scholar 

  3. G. Lawes, A.S. Risbud, A.P. Ramirez, Ram Seshadri, Phys. Rev. B 71, 045201 (2005)

    Article  ADS  Google Scholar 

  4. A.S. Risbud, N.A. Spaldin, Z.Q. Chen, S. Stemmer, R. Seshadri, Phys. Rev. B 68, 205202 (2003)

    Article  ADS  Google Scholar 

  5. C.N.R. Rao, F.L. Deepak, J. Mater. Chem. 15, 573 (2005)

    Article  Google Scholar 

  6. S. Thota, T. Dutta, J. Kumar, J. Phys.: Condens. Matter 18, 2473 (2006)

    Article  ADS  Google Scholar 

  7. K. Sato, H. Katayama-Yoshida, Physica B 308, 904 (2001)

    Article  ADS  Google Scholar 

  8. K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001)

    Article  ADS  Google Scholar 

  9. B.K. Roberts, A.B. Pakhomov, V.S. Shutthanandan, K.M. Krishnan, J. Appl. Phys. 97, 10D310 (2005)

    Article  Google Scholar 

  10. H. Liu, X. Zhang, L. Li, Y.X. Wang, K.H. Gao, Z.Q. Li, R.K. Zheng, S.P. Ringer, B. Zhang, X.X. Zhang, Appl. Phys. Lett. 91, 072511 (2007)

    Article  ADS  Google Scholar 

  11. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)

    Article  ADS  Google Scholar 

  12. K.R. Kittilstved, N.S. Norberg, D.R. Gamelin, Phys. Rev. Lett. 94, 147209 (2005)

    Article  ADS  Google Scholar 

  13. N.H. Hong, J. Sakai, N.T. Huong, N. Poirot, A. Ruyter, Phys. Rev. B 72, 045336 (2005)

    Article  ADS  Google Scholar 

  14. B. Wang, J. Iqbal, X. Shan, G. Huang, H. Fu, R. Yu, D. Yu, Mater. Chem. Phys. 113, 103 (2009)

    Article  Google Scholar 

  15. L.J. Zhuge, X.M. Wu, Z.F. Wu, X.M. Chen, Y.D. Meng, Scr. Mater. 60, 214 (2009)

    Article  Google Scholar 

  16. Y.M. Hu, C.W. Hsu, C.Y. Wang, S.S. Lee, S.J. Wang, T.C. Han, W.Y. Chou, Scr. Mater. 61, 1028 (2009)

    Article  Google Scholar 

  17. S.B. Zhang, S.-H. Wei, A. Zunger, Phys. Rev. B 63, 075205 (2001)

    Article  ADS  Google Scholar 

  18. S. Deka, R. Pasricha, P.A. Joy, Chem. Mater. 16, 1168 (2004)

    Article  Google Scholar 

  19. L. Schneider, S.V. Zaitsev, W. Jin, A. Kompch, M. Winterer, M. Acet, G. Bacher, Nanotechnology 20, 135604 (2009)

    Article  ADS  Google Scholar 

  20. L.B. Duan, G.H. Rao, J. Yu, Y.C. Wang, W.G. Chu, L.N. Zhang, J. Appl. Phys. 102, 103907 (2007)

    Article  ADS  Google Scholar 

  21. L.B. Duan, W.G. Chu, J. Yu, Y.C. Wang, L.N. Zhang, G.Y. Liu, J.K. Liang, G.H. Rao, J. Magn. Magn. Mater. 320, 1573 (2008)

    Article  ADS  Google Scholar 

  22. J. Rodríguez-Carvajal, Physica B 192, 55 (1993)

    Article  ADS  Google Scholar 

  23. Y.M. Hu, J.W. Chiou, T.C. Han, Y.T. Chen, C.W. Hsu, G.J. Chen, W.Y. Chou, J. Chang, J.Y. Hsu, Y.C. Yu, J. Phys. D. Appl. Phys. 41, 205301 (2008)

    Google Scholar 

  24. L.B. Duan, G.H. Rao, J. Yu, Y.C. Wang, Solid State Commun. 145, 525 (2008)

    Article  ADS  Google Scholar 

  25. Y. Chen, K. Ding, L. Yang, B. Xie, F. Song, J. Wan, G. Wang, M. Han, Appl. Phys. Lett. 92, 173112 (2008)

    Article  ADS  Google Scholar 

  26. R.D. McNorton, J.M. MacLaren, J. Phys.: Condens. Matter 21, 445803 (2009)

    Article  ADS  Google Scholar 

  27. J. Kanamori, Prog. Theor. Phys. 30, 275 (1963)

    Article  MATH  ADS  Google Scholar 

  28. K.R. Kittilstved, W.K. Liu, D.R. Gamelin, Nat. Mater. 5, 291 (2006)

    Article  ADS  Google Scholar 

  29. J.B. Wang, G.J. Huang, X.L. Zhong, L.Z. Sun, Y.C. Zhou, E.H. Liu, Appl. Phys. Lett. 88, 252502 (2006)

    Article  ADS  Google Scholar 

  30. R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, M.J. Callahan, Phys. Rev. B 75, 165202 (2007)

    Article  ADS  Google Scholar 

  31. S. Singh, M.S.R. Rao, Phys. Rev. B 80, 045210 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, L.B., Zhao, X.R., Liu, J.M. et al. Room-temperature ferromagnetism in lightly Cr-doped ZnO nanoparticles. Appl. Phys. A 99, 679–683 (2010). https://doi.org/10.1007/s00339-010-5590-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5590-7

Keywords

Navigation