Skip to main content
Log in

Antiferroelectric–ferroelectric phase transition in lead zinc niobate modified lead zirconate ceramics: crystal studies, microstructure, thermal and electrical properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The combination of antiferroelectric PbZrO3 (PZ) and relaxor ferroelectric Pb(Zn1/3Nb2/3)O3 was prepared via the columbite precursor method. The basic characterizations were performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), linear thermal expansion, differential scanning calorimetry (DSC) techniques, dielectric spectroscopy, and hysteresis measurement. The XRD result indicated that the solid solubility limit of the (1−x)PZ–xPZN system was about x=0.40. The crystal structure of (1−x)PZ–xPZN transformed from orthorhombic to rhombohedral symmetry when the concentration of PZN was increased. A ferroelectric intermediate phase began to appear between the paraelectric and antiferroelectric phases of pure PZ, with increasing PZN content. In addition, the temperature range of the ferroelectric phase increased with increasing PZN concentration. The morphotropic phase boundary (MPB) in this system was located close to the composition, x=0.20.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.S. Bhalla, R. Guo, R. Roy, Mater. Res. Innov. 4, 3 (2000)

    Article  Google Scholar 

  2. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)

    Article  Google Scholar 

  3. Y. Xu, Ferroelectric Materials and Their Application (Elsevier, Amsterdam, 1991)

    Google Scholar 

  4. B. Jaffe, W.R. Cook, Piezoelectric Ceramic (R.A.N. Publishers, 1971)

  5. P. Seung-Eek, T.R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 1140 (1997)

    Article  Google Scholar 

  6. T. Takenaka, K. Muramata, T. Fujii, Ferroelectrics 134, 133 (1992)

    Article  Google Scholar 

  7. J. Kuwata, K. Uchino, S. Nomura, Ferroelectrics 37, 579 (1981)

    Article  Google Scholar 

  8. N. Vittayakorn, C. Puchmark, G. Rujijanagul, X. Tan, D.P. Cann, Curr. Appl. Phys. 6, 303 (2006)

    Article  ADS  Google Scholar 

  9. N. Vittayakorn, G. Rujijanagul, X. Tan, M.A. Marquardt, D.P. Cann, J. Appl. Phys. 96, 5103 (2004)

    Article  ADS  Google Scholar 

  10. N. Vittayakorn, T. Tunkasiri, Phys. Scr. T 129, 199 (2007)

    Article  ADS  Google Scholar 

  11. E. Sawaguchi, G. Shirane, S. Hoshino, Phys. Rev. 83, 1078 (1951)

    Article  ADS  Google Scholar 

  12. G. Shirane, Phys. Rev. 86, 219 (1952)

    Article  ADS  Google Scholar 

  13. N. Vittayakorn, T. Bongkarn, G. Rujijanagul, Physica B, Condens. Matter 387, 415 (2007)

    Article  ADS  Google Scholar 

  14. B. Xu, N.G. Pai, L.E. Cross, Mater. Lett. 34, 157 (1998)

    Article  Google Scholar 

  15. X. Hao, J. Zhai, J. Zhou, J. Yang, X. Song, S. An, J. Cryst. Growth 312, 667 (2010)

    Article  ADS  Google Scholar 

  16. S. Wirunchit, N. Vittayakorn, J. Appl. Phys. 104, 024103 (2008)

    Article  ADS  Google Scholar 

  17. W. Banlue, N. Vittayakorn, Appl. Phys. A 93, 565 (2008)

    Article  Google Scholar 

  18. S. Wirunchit, P. Laoratanakul, N. Vittayakorn, J. Phys. D, Appl. Phys. 41, 125406 (2008)

    Article  ADS  Google Scholar 

  19. A. Halliyal, U. Kumar, R.E. Newham, L.E. Cross, Am. Ceram. Soc. Bull. 66, 671 (1987)

    Google Scholar 

  20. T.R. Shrout, A. Halliyal, Am. Ceram. Soc. Bull. 66, 704 (1987)

    Google Scholar 

  21. J.R. Belsick, A. Halliyal, U. Kumar, R.E. Newham, Am. Ceram. Soc. Bull. 66, 664 (1987)

    Google Scholar 

  22. R.D. Shannon, Acta Crystallogr. A32, 751 (1976)

    ADS  Google Scholar 

  23. N. Vittayakorn, P. Charoonsuk, P. Kasiansin, S. Wirunchit, B. Boonchom, J. Appl. Phys. 106, 064104 (2009)

    Article  ADS  Google Scholar 

  24. A.L. Costa, C. Galassi, G. Fabbri, E. Roncari, C. Capiani, J. Eur. Ceram. Soc. 21, 1165 (2001)

    Article  Google Scholar 

  25. J.C. William, Materials Science and Engineering: An Introduction (Wiley, New York, 2007)

    Google Scholar 

  26. S. Wirunchit, N. Vittayakorn, Ferroelectrics 382, 135 (2009)

    Article  Google Scholar 

  27. J. Yoo, K. Kim, C. Lee, L. Hwang, D. Paik, H. Yoon, H. Choi, Sens. Actuators A, Phys. 137, 81 (2007)

    Article  Google Scholar 

  28. K. Uchino, S. Nomura, Ferroelectr. Lett. 44, 55 (1982)

    Article  Google Scholar 

  29. V. Koval, C. Alemany, J. Briancin, H. Brunckova, J. Electroceram. 10, 19 (2003)

    Article  Google Scholar 

  30. X.J. Lu, X.M. Chen, J. Electroceram. 7, 127 (2001)

    Article  Google Scholar 

  31. C. Stenger, A.J. Burggraaf, Phys. Status Solidi 61, 275 (1980)

    Article  ADS  Google Scholar 

  32. N. Vittayakorn, D.P. Cann, Appl. Phys. A 86, 403 (2007)

    Article  ADS  Google Scholar 

  33. S. Roberts, J. Am. Ceram. Soc. 33, 63 (1953)

    Article  Google Scholar 

  34. R. Yimnirun, S. Ananta, P. Laoratanakul, J. Eur. Ceram. Soc. 25, 3235 (2005)

    Article  Google Scholar 

  35. S. Wongsaenmai, Y. Laosiritaworn, S. Ananta, R. Yimnirun, Mater. Sci. Eng. B 128, 83 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naratip Vittayakorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukkha, U., Muanghlua, R., Niemcharoen, S. et al. Antiferroelectric–ferroelectric phase transition in lead zinc niobate modified lead zirconate ceramics: crystal studies, microstructure, thermal and electrical properties. Appl. Phys. A 100, 551–559 (2010). https://doi.org/10.1007/s00339-010-5871-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5871-1

Keywords

Navigation