Skip to main content
Log in

Magnetocaloric properties of as-quenched Ni50.4Mn34.9In14.7 ferromagnetic shape memory alloy ribbons

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The temperature dependences of magnetic entropy change and refrigerant capacity have been calculated for a maximum field change of Δ H=30 kOe in as-quenched ribbons of the ferromagnetic shape memory alloy Ni50.4Mn34.9In14.7 around the structural reverse martensitic transformation and magnetic transition of austenite. The ribbons crystallize into a single-phase austenite with the L21-type crystal structure and Curie point of 284 K. At 262 K austenite starts its transformation into a 10-layered structurally modulated monoclinic martensite. The first- and second-order character of the structural and magnetic transitions was confirmed by the Arrott plot method. Despite the superior absolute value of the maximum magnetic entropy change obtained in the temperature interval where the reverse martensitic transformation occurs \((|\varDelta S_{\mathrm{M}}^{\max}|=7.2\mbox{ J}\,\mbox{kg}^{-1}\,\mbox{K}^{-1})\) with respect to that obtained around the ferromagnetic transition of austenite \((|\varDelta S_{\mathrm{M}}^{\max}|=2.6\mbox{ J}\,\mbox{kg}^{-1}\,\mbox{K}^{-1})\), the large average hysteretic losses due to the effect of the magnetic field on the phase transformation as well as the narrow thermal dependence of the magnetic entropy change make the temperature interval around the ferromagnetic transition of austenite of a higher effective refrigerant capacity (\(\mathrm{RC}^{\mathrm{magn}}_{\mathrm{eff}}=95\mbox{J}\,\mbox{kg}^{-1}\) versus \(\mathrm{RC}^{\mathrm{struct}}_{\mathrm{eff}}=60\mbox{J}\,\mbox{kg}^{-1})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z.D. Han, D.H. Wang, C.L. Zhang, S.L. Tang, B.X. Gu, Y.W. Du, Appl. Phys. Lett. 89, 182507 (2006)

    Article  ADS  Google Scholar 

  2. T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, E. Suard, B. Ouladdiaf, Phys. Rev. B 75, 104414 (2007)

    Article  ADS  Google Scholar 

  3. A.K. Pathak, M. Khan, I. Dubenko, S. Stadler, N. Ali, Appl. Phys. Lett. 90, 262504 (2007)

    Article  ADS  Google Scholar 

  4. P.A. Bhobe, K.R. Priolkar, A.K. Nigam, Appl. Phys. Lett. 91, 242503 (2007)

    Article  ADS  Google Scholar 

  5. V.K. Sharma, M.K. Chattopadhyay, S.B. Roy, J. Phys. D: Appl. Phys. 40, 1869 (2007)

    Article  ADS  Google Scholar 

  6. Z.D. Han, D.H. Wang, C.L. Zhang, H.C. Xuan, J.R. Zhang, B.X. Gu, Y.W. Du, Solid State Commun. 146, 124 (2008)

    Article  ADS  Google Scholar 

  7. X. Moya, L. Mañosa, A. Planes, S. Askoy, M. Acet, E.F. Wassermann, T. Krenke, Phys. Rev. B 75, 184412 (2007)

    Article  ADS  Google Scholar 

  8. M.K. Chattopadhyay, V.K. Sharma, S.B. Roy, Appl. Phys. Lett. 92, 022503 (2008)

    Article  ADS  Google Scholar 

  9. Y. Sutuo, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, K. Oikawa, Appl. Phys. Lett. 85, 4358 (2004)

    Article  ADS  Google Scholar 

  10. T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, Phys. Rev. B 73, 174413 (2006)

    Article  ADS  Google Scholar 

  11. T. Kanomata, T. Yasuda, S. Sasaki, H. Nishihara, R. Kainuma, W. Ito, K. Oikawa, K. Ishida, K.-U. Neumann, K.R.A. Ziebeck, J. Magn. Magn. Mater. 321, 773 (2008)

    Article  ADS  Google Scholar 

  12. A. Planes, L. Mañosa, M. Acet, J. Phys.: Condens. Matter 21, 233201 (2009)

    Article  ADS  Google Scholar 

  13. J.F. Liu, N. Scheerbaum, D. Hinz, O. Gutfleisch, Appl. Phys. Lett. 92, 162509 (2008)

    Article  ADS  Google Scholar 

  14. J.L. Sánchez Llamazares, B. Hernando, C. García, J. Gonzalez, L. Escoda, J.J. Suñol, J. Phys. D: Appl. Phys. 42, 045002 (2009)

    Article  ADS  Google Scholar 

  15. A.M. Tishin, Y.I. Spichkin, The Magnetocaloric Effect and Its Applications (Institute of Physics, Bristol, 2003)

    Book  Google Scholar 

  16. K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Pecharsky, C.B. Zimm, Mater. Sci. Forum 315–317, 69 (1999)

    Article  Google Scholar 

  17. Z.D. Han, D.H. Wang, C.L. Zhang, S.L. Tang, B.X. Gu, Y.W. Du, Appl. Phys. Lett. 89, 182507 (2006)

    Article  ADS  Google Scholar 

  18. H.C. Xuan, K.X. Xie, D.H. Wang, Z.D. Han, C.L. Zhang, B.X. Gu, Y.W. Du, Appl. Phys. Lett. 92, 242506 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Sánchez Llamazares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez Llamazares, J.L., García, C., Hernando, B. et al. Magnetocaloric properties of as-quenched Ni50.4Mn34.9In14.7 ferromagnetic shape memory alloy ribbons. Appl. Phys. A 103, 1125–1130 (2011). https://doi.org/10.1007/s00339-010-6053-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6053-x

Keywords

Navigation