Skip to main content
Log in

A novel random void model and its application in predicting void content of composites based on ultrasonic attenuation coefficient

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A novel two-dimensional random void model (RVM) based on random medium theory and a statistical method is proposed to describe random voids in composite materials. The spatial autocorrelation function and statistical parameters are used to describe the large-scale heterogeneity from the composite matrix and the small-scale heterogeneities of elastic fluctuations from random voids, the values of which are determined by statistical data from microscopic observations of void morphology. A RVM for CFRP (carbon fiber reinforced polymer) composite specimens with void content of 0.03–4.62% is presented. It is found that the geometric morphology of voids from the RVM presents good matches to the microscopic images. Calculations of ultrasonic attenuation coefficients from the RVM at 5 MHz are much closer to the experiments than those from the previous deterministic model. Furthermore, the RVM can also cover abnormal coefficients from unusually large voids, which unpredictably occur during the composite preparation and have a detrimental effect on the strength and mechanical properties of the components. The significant enhancements in description of void morphology and quantitative correlation between void content and ultrasonic attenuation coefficient make this method a good candidate for predicting void content of composite materials non-destructively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.F. Ying, R. Truell, J. Appl. Phys. 27, 1086 (1956)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. D.E.W. Stone, B. Clarke, Non-Destruct. Test. 8, 137 (1975)

    Article  Google Scholar 

  3. E.A. Birt, R.A. Smith, Insight 46, 681 (2004)

    Article  Google Scholar 

  4. B.G. Martin, NDT Int. 9, 242 (1976)

    Article  Google Scholar 

  5. B.G. Martin, J. Appl. Phys. 48, 3368 (1977)

    Article  ADS  Google Scholar 

  6. J.M. Hale, J.N. Ashton, NDT Int. 21, 321 (1988)

    Article  Google Scholar 

  7. D.K. Hsu, Rev. Prog. QNDE 7B, 1063 (1988)

    Google Scholar 

  8. S.M. Nair, D.K. Hsu, J.H. Rose, J. Nondestruct. Eval. 8, 13 (1989)

    Article  Google Scholar 

  9. H. Jeong, D.K. Hsu, Ultrasonics 33, 195 (1995)

    Article  Google Scholar 

  10. X.J. Zhou, H.W. You, Y.D. Cheng, Acta Mater. Compos. Sin. 14, 99 (1997)

    MATH  Google Scholar 

  11. I.M. Daniel, S.C. Wooh, I. Komsky, J. Nondestruct. Eval. 11, 1 (1992)

    Article  Google Scholar 

  12. H. Jeong, J. Compos. Mater. 31, 276 (1997)

    Article  Google Scholar 

  13. D.K. Hsu, K.M. Uhl, Rev. Prog. QNDE 6B, 1175 (1987)

    Google Scholar 

  14. Z. Guerdal, A.P. Tomasino, S.B. Biqqers, SAMPE J. 27, 39 (1991)

    Google Scholar 

  15. P. Olivier, J.P. Cottu, B. Ferret, Composites 26, 509 (1995)

    Article  Google Scholar 

  16. A.P. Mouritz, J. Compos. Mater. 34, 218 (2000)

    Google Scholar 

  17. H.S. Huang, R. Talreja, Compos. Sci. Technol. 65, 2005 (1964)

    Google Scholar 

  18. T. Mura, H.M. Shodja, Y. Hirose, Appl. Mech. Rev. 49, S118 (1996)

    Article  ADS  Google Scholar 

  19. Y.A. Gowayed, J. Compos. Technol. Res. 19, 168 (1997)

    Article  Google Scholar 

  20. L.-P. Chao, J.H. Huang, J. Reinf. Plast. Compos. 18, 592 (1999)

    Google Scholar 

  21. B. Madsen, H. Lilholt, Compos. Sci. Technol. 63, 1265 (2003)

    Article  Google Scholar 

  22. J. Tworzydlstroko, C.W.J. Beenakker, Phys. Rev. Lett. 85, 674 (2000)

    Article  ADS  Google Scholar 

  23. A.M. Baig, F.A. Dahlen, S.-H. Hung, Geophys. J. Int. 153, 467 (2003)

    Article  ADS  Google Scholar 

  24. L. Wang, P.H.Y. Lee, J.D. Barter, M. Caponi, Appl. Phys. Lett. 72, 1998 (1914)

    Google Scholar 

  25. H. Cao, J.Y. Xu, D.Z. Zhang, S.H. Chang, S.T. Ho, E.W. Seelig, X. Liu, R.P.H. Chang, Phys. Rev. Lett. 84, 5584 (2000)

    Article  ADS  Google Scholar 

  26. R. Fischer, D.N. Neshev, S.M. Saltiel, A.A. Sukhorukov, W. Krolikowski, Y.S. Kivshar, Appl. Phys. Lett. 91, 031104 (2007)

    Article  ADS  Google Scholar 

  27. S. Faez, P.M. Johnson, A. Lagendijk, Phys. Rev. Lett. 103, 053903 (2009)

    Article  ADS  Google Scholar 

  28. A. Derode, V. Mamou, A. Tourin, Phys. Lett. E 74, 036606 (2006)

    ADS  Google Scholar 

  29. A. Aubry, A. Derode, Phys. Rev. Lett. 102, 084301 (2009)

    Article  ADS  Google Scholar 

  30. H. Cao, Y.G. Zhao, X. Liu, E.W. Seelig, R.P.H. Chang, Appl. Phys. Lett. 75, 1213 (1999)

    Article  ADS  Google Scholar 

  31. G. Zacharakis, N.A. Papadogiannis, T.G. Papazoglou, Appl. Phys. Lett. 81, 2511 (2002)

    Article  ADS  Google Scholar 

  32. M. Kardar, Y.-C. Zhang, Phys. Rev. Lett. 58, 2087 (1987)

    Article  ADS  Google Scholar 

  33. J.H. Lee, J.M. Kim, Phys. Lett. E 79, 051127 (2009)

    ADS  Google Scholar 

  34. S.R. Ghiorse, SAMPE Q. 24, 54 (1993)

    ADS  Google Scholar 

  35. Y.K. Hamidi, L. Aktas, M.C. Altan, Compos. Sci. Technol. 65, 1306 (2005)

    Article  Google Scholar 

  36. M. Kosek, P. Sejak, Compos. Sci. Technol. 69, 1465 (2009)

    Article  Google Scholar 

  37. L.T. Ikelle, S.K. Yung, F. Daube, Geophysics 58, 1359 (1993)

    Article  ADS  Google Scholar 

  38. R.S. Schechter, H.H. Chaskelis, R.B. Mignogna, P.P. Delsanto, Science 265, 1188 (1994)

    Article  ADS  Google Scholar 

  39. D.Z. Wo, Encyclopedia of Composites (Chemical Industry Press, Beijing, 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, L., Zhang, X., Chen, J. et al. A novel random void model and its application in predicting void content of composites based on ultrasonic attenuation coefficient. Appl. Phys. A 103, 1153–1157 (2011). https://doi.org/10.1007/s00339-010-6061-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6061-x

Keywords

Navigation