Skip to main content
Log in

The effect of TiO2 coating on the electrochemical performance of ZnO nanorod as the anode material for lithium-ion battery

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnO nanorods were coated with TiO2 thin film using the atomic layer deposition (ALD) process. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used to characterize the crystal structure and surface morphology of the coated composites. Results of galvanostatic charge and discharge tests and cyclic voltammograms suggest that lithium ions can reversibly intercalate into and deintercalate from TiO2-coated ZnO nanorods, and that stable cycling behavior in an ethylene carbonate-based electrolyte can be achieved. The TiO2 coating is believed to reduce the degree of reaction electrodes have with the electrolyte during the charge–discharge process since the inactive coating layer prevents the electrode from having direct contact with the electrolyte. Furthermore, the one-dimensional nanorods provide a relatively higher surface area than those of their bulk form or thin film, which allows a much greater portion of atoms on the surface to undergo the electrochemical reaction. The electrochemical study indicates that the TiO2-coated ZnO nanorod arrays might be a candidate for the anode material in Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407, 496 (2000)

    Article  ADS  Google Scholar 

  2. S. Grugeon, S. Laruelle, R.H. Urbina, L. Dupont, P. Poizot, J.M. Tarascon, J. Electrochem. Soc. 148, A285 (2001)

    Article  Google Scholar 

  3. Y. Wang, Y.F. Zhang, H.R. Liu, S.J. Yu, Q.Z. Qin, Electrochim. Acta 48, 4253 (2003)

    Article  Google Scholar 

  4. J. Morales, L. Sanchez, F. Martin, J.R. Ramos-Barrado, M. Sanchez, Electrochim. Acta 49, 4589 (2004)

    Article  Google Scholar 

  5. Y.M. Kang, M.S. Song, J.H. Kim, H.S. Kim, M.S. Park, J.Y. Lee, H.K. Liu, S.X. Dou, Electochim. Acta 50, 3667 (2005)

    Article  Google Scholar 

  6. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science 276, 1395 (1997)

    Article  Google Scholar 

  7. L.J. Fu, H. Liu, H.P. Zhang, C. Li, T. Zhang, Y.P. Wu, R. Holze, H.Q. Wu, Electrochem. Commun. 8, 1 (2006)

    Article  Google Scholar 

  8. Z.W. Fu, F. Huang, Y. Zhang, Y. Chu, Q.Z. Qin, J. Electrochem. Soc. 150, A714 (2003)

    Article  Google Scholar 

  9. F. Belliard, J.T.S. Irvine, J. Power Sources 97, 219 (2001)

    Article  Google Scholar 

  10. F. Belliard, P.A. Connor, J.T.S. Ivrine, Solid State Ion. 135, 163 (2000)

    Article  Google Scholar 

  11. C.Q. Zhang, J.P. Tu, Y.F. Yuan, X.H. Huang, X.T. Chen, F. Mao, J. Electrochem. Soc. 154, A65 (2007)

    Article  Google Scholar 

  12. Y.P. Wu, E. Rahm, R. Holze, J. Power Sources 114, 228 (2003)

    Article  Google Scholar 

  13. M. Mladenov, R. Stoyanova, E. Zhecheva, S. Vassilev, Electrochem. Commun. 3, 410 (2001)

    Article  Google Scholar 

  14. H.S. Liu, Z.R. Zhang, Z.L. Gong, Y. Yang, Solid State Ion. 166, 317 (2004)

    Article  Google Scholar 

  15. P. Suresh, A.K. Shukla, N. Munichandraiah, Mater. Lett. 59, 953 (2005)

    Article  Google Scholar 

  16. J. Ying, C. Wan, C. Jiang, J. Power Sources 102, 162 (2001)

    Article  Google Scholar 

  17. J. Cho, Y.J. Kim, B. Park, J. Electrochem. Soc. 148, A1110 (2001)

    Article  Google Scholar 

  18. Z. Chen, J.R. Dahn, Electrochem. Solid-State Lett. 7, A11 (2004)

    Article  Google Scholar 

  19. K.S. Tan, M.V. Reddy, G.V.S. Rao, B.V.R. Chowdari, J. Power Sources 141, 129 (2005)

    Article  Google Scholar 

  20. X.D. Tang, Q.M. Pan, J. Liu, J. Electrochem. Soc. 157, A55 (2010)

    Article  Google Scholar 

  21. H.B. Wang, Q.M. Pan, Y.X. Cheng, J.W. Zhao, G.P. Yin, Electrochim. Acta 54, 2851 (2009)

    Article  Google Scholar 

  22. J.P. Liu, Y.Y. Li, R.M. Ding, J. Jiang, Y.Y. Hu, X.X. Ji, Q.B. Chi, Z.H. Zhu, X.T. Huang, J. Phys. Chem. C 113, 5336 (2009)

    Article  Google Scholar 

  23. Q.M. Pan, L.M. Qin, J. Liu, H.B. Wang, Electrochim. Acta 55, 5780 (2010)

    Article  Google Scholar 

  24. J. Cho, Y.J. Kim, T.-J. Kim, B. Park, Angew. Chem. Int. Ed. 40, 3367 (2001)

    Article  Google Scholar 

  25. G.T.K. Fey, C.Z. Lu, T.P. Kumar, Y.C. Chang, Surf. Coat. Technol. 199, 22 (2005)

    Article  Google Scholar 

  26. C. Natarajan, K. Setoguchi, G. Nogami, Electrochim. Acta 43, 3317 (1998)

    Article  Google Scholar 

  27. L. Vayssieres, K. Keis, A. Hagfeldt, S. Lindquist, Chem. Mater. 13, 439 (2001)

    Google Scholar 

  28. H.E. Cheng, W.J. Lee, Mater. Chem. Phys. 97, 315 (2006)

    Article  ADS  Google Scholar 

  29. R. Van de Krol, A. Goossens, E. Meulenkamp, J. Electrochem. Soc. 146, 3150 (1999)

    Article  Google Scholar 

  30. R. Hengerer, L. Kavan, P. Krtil, M. Gratzel, J. Electrochem. Soc. 147, 1467 (2000)

    Article  Google Scholar 

  31. M. Wagemaker, A. Kentgens, F. Mulder, Nature 418, 397 (2002)

    Article  ADS  Google Scholar 

  32. P. Krtil, D. Fattakhova, L. Kavan, S. Burnside, M. Gratzel, Solid State Ion. 135, 101 (2000)

    Article  Google Scholar 

  33. D. Fattakhova, L. Kavan, P. Krtil, J. Solid State Electrochem. 5, 196 (2001)

    Article  Google Scholar 

  34. H.E. Cheng, C.C. Chen, J. Electrochem. Soc. 155, D604 (2008)

    Article  Google Scholar 

  35. A.S. Arico, P.G. Bruce, B. Scrosati, J.M. Tarascon, W.V. Schalkwijk, Nat. Mater. 49, 366 (2005)

    Article  ADS  Google Scholar 

  36. Y.K. Zhou, L. Cao, F.B. Zhang, B.L. He, H.L. Li, J. Electrochem. Soc. 150, A1246 (2003)

    Article  Google Scholar 

  37. A. Débart, L. Dupont, P. Poizot, J.-B. Leriche, J.M. Tarascon, J. Electrochem. Soc. 148, A1266 (2001)

    Article  Google Scholar 

  38. Y.H. Lee, I.C. Leu, C.L. Liao, S.T. Chang, M.T. Wu, J.H. Yen, K.Z. Fung, Electrochem. Solid-State Lett. 9, A207 (2006)

    Article  Google Scholar 

  39. J. Cho, Y.J. Kim, T.-J. Kim, B. Park, Angew. Chem. Int. Ed. 40, 3367 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ing-Chi Leu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JH., Hon, MH., Chung, YW. et al. The effect of TiO2 coating on the electrochemical performance of ZnO nanorod as the anode material for lithium-ion battery. Appl. Phys. A 102, 545–550 (2011). https://doi.org/10.1007/s00339-010-6097-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6097-y

Keywords

Navigation