Skip to main content
Log in

A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present FDTD simulations results obtained using the Drude Critical points model. This model enables spectroscopic studies of metallic structures over wider wavelength ranges than usually used, and it facilitates the study of structures made of several metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Hao, R. Mittra, FDTD Modeling of Metamaterials: Theory and Applications (Artech House, Norwood, 2008)

    Google Scholar 

  2. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method, 2nd edn. (Artech House, Norwood, 2000)

    MATH  Google Scholar 

  3. M.C. Beard, C.A. Schmuttenmaer, Using the finite-difference time-domain pulse propagation method to simulate time-resolved the experiments. J. Chem. Phys. 114(7), 2903–2909 (2001)

    Article  ADS  Google Scholar 

  4. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, M. Lamy de la Chapelle, Improved analytical fit of gold dispersion: application to the modelling of extinction spectra with the FDTD method. Phys. Rev. B 71(8), 085416 (2005)

    Article  ADS  Google Scholar 

  5. T.-W. Lee, S.K. Gray, Subwavelength light bending by metal slit structures. Opt. Express 13(24), 9652–9659 (2005)

    Article  ADS  Google Scholar 

  6. N.G. Skinner, D.M. Byrne, Finite-difference time-domain analysis of frequency-selective surfaces in the mid-infrared. Appl. Opt. 45(9), 1943–1950 (2006)

    Article  ADS  Google Scholar 

  7. F. Hao, P. Nordlander, Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles. Chem. Phys. Lett. 446, 115–118 (2007)

    Article  ADS  Google Scholar 

  8. P.G. Etchegoin, E.C. Le Ru, M. Meyer, An analytic model for the optical properties of gold. J. Chem. Phys. 125, 164705 (2006)

    Article  ADS  Google Scholar 

  9. P.G. Etchegoin, E.C. Le Ru, M. Meyer, Erratum: “an analytic model for the optical properties of gold”. J. Chem. Phys. 127, 189901 (2007)

    Article  ADS  Google Scholar 

  10. A. Vial, Implementation of the critical points model in the recursive convolution method for dispersive media modeling with the FDTD method. J. Opt. A, Pure Appl. Opt. 9(7), 745–748 (2007)

    Article  ADS  Google Scholar 

  11. A. Vial, T. Laroche, Description of dispersion properties of metals by mean of the critical points model and application to the study of resonant structures using the FDTD method. J. Phys. D, Appl. Phys. 40, 7152–7158 (2007)

    Article  ADS  Google Scholar 

  12. A. Vial, T. Laroche, Comparison of gold and silver dispersion laws suitable for FDTD simulations. Appl. Phys. B 93(1), 139–143 (2008)

    Article  ADS  Google Scholar 

  13. J.Y. Lu, Y.H. Chang, Optical singularities associated with the energy flow of two closely spaced core-shell nanocylinders. Opt. Express 17(22), 19451–19458 (2009)

    Article  ADS  Google Scholar 

  14. V.M. Shalaev, W. Cai, U.K. Chettiar, H.-K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Negative index of refraction in optical metamaterials. Opt. Lett. 30(24), 3356–3358 (2005)

    Article  ADS  Google Scholar 

  15. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  16. M. Han, R.W. Dutton, S. Fan, Model dispersive media in finite-difference time-domain method with complex-conjugate pole-residue pairs. IEEE Microw. Wirel. Compon. Lett. 16(3), 119–121 (2006)

    Article  Google Scholar 

  17. I. Udagedara, M. Premaratne, I.D. Rukhlenko, H.T. Hattori, G.P. Agrawal, Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials. Opt. Express 17(23), 21179–21190 (2009)

    Article  Google Scholar 

  18. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)

    Article  ADS  Google Scholar 

  19. E.D. Palik (ed.), Handbook of Optical Constants of Solids (Academic Press, San Diego, 1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vial.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vial, A., Laroche, T., Dridi, M. et al. A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method. Appl. Phys. A 103, 849–853 (2011). https://doi.org/10.1007/s00339-010-6224-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6224-9

Keywords

Navigation