Skip to main content
Log in

Effects of La–Zn substitution on microstructure and magnetic properties of strontium ferrite nanofibers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Sr1−x La x Zn x Fe12−x O19/poly(vinylpyrrolidone) (PVP) (0.0≤x≤0.5) precursor nanofibers were prepared by the sol–gel assisted electrospinning method from starting reagents of metal salts and PVP. Subsequently, the Sr1−x La x Zn x Fe12−x O19 nanofibers with diameters of around 100 nm were obtained by calcination of the precursor at 800 to 1000°C for 2 h. The precursor and resultant Sr1−x La x Zn x Fe12−x O19 nanofibers were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometer and vibrating sample magnetometer. The grain sizes of Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers are in a nanoscale from 40 to 48 nm corresponding to the calcination temperature from 800 to 1000°C. With La–Zn substitution content increase from 0 to 0.5, the grain size and lattice constants for the Sr1−x La x Zn x Fe12−x O19 nanofibers obtained at 900°C show a steady reduction trend. With variations of the ferrite particle size arising from the La–Zn substitution, the nanofiber morphology changes from the necklace-like structure linking by single elongated plate-like particles to the structure building of multi-particles on the nanofiber cross-section. The specific saturation magnetization of Sr1−x La x Zn x Fe12−x O19 nanofibers initially increases with the La–Zn content, reaching a maximum value 72 A m2 kg−1 at x=0.2, and then decreases with a further La–Zn content increase up to x=0.5, while the coercivity exhibits a continuous reduction from 413 (x=0) to 219 kA m−1 (x=0.5). The mechanism for the La–Zn substitution and the nanofiber magnetic property are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B.S. Zlatkov, M.V. Nikolic, O. Aleksic, H. Danninger, E. Halwax, J. Magn. Magn. Mater. 321, 330 (2009)

    Article  ADS  Google Scholar 

  2. S.P. Castaneda, J.R. Martńez, F. Ruiz, S. Palomares-Sánchez, J.A. Matutes-Aquino, J. Magn. Magn. Mater. 250, 160 (2002)

    Article  ADS  Google Scholar 

  3. J. Dho, E.K. Lee, J.Y. Park, N.H. Hur, J. Magn. Magn. Mater. 285, 164 (2005)

    Article  ADS  Google Scholar 

  4. J.M. Bai, X.X. Liu, T. Xie, F.L. Wei, Z. Yang, Mater. Sci. Eng. B 68, 182 (2000)

    Article  Google Scholar 

  5. D.H. Choi, S.W. Lee, I.B. Shim, C.S. Kim, J. Magn. Magn. Mater. 304, e243 (2006)

    Article  ADS  Google Scholar 

  6. N. Chen, K. Yang, M.Y. Gu, J. Alloys Compd. 490, 609 (2010)

    Article  Google Scholar 

  7. L. Qiao, L.S. You, J.W. Zheng, L.Q. Jiang, J.W. Sheng, J. Magn. Magn. Mater. 318, 74 (2007)

    Article  ADS  Google Scholar 

  8. C.S. Wang, F.L. Wei, M. Lu, D.H. Han, Z. Yang, J. Magn. Magn. Mater. 183, 241 (1998)

    Article  ADS  Google Scholar 

  9. D. Lisjak, M. Drofenik, J. Eur. Ceram. 24, 1841 (2004)

    Article  Google Scholar 

  10. X.X. Liu, J.M. Bai, F.L. Wei, H. Xu, Z. Yang, J. Appl. Phys. 87, 2503 (2000)

    Article  ADS  Google Scholar 

  11. J.C. Corral-Huacuz, G. Mendoza-Suárez, J. Magn. Magn. Mater. 242–245, 430 (2002)

    Article  Google Scholar 

  12. S.K. Nataraj, B.H. Kim, M.D. Crue, Mater. Lett. 63, 218 (2009)

    Article  Google Scholar 

  13. L. Luo, B.D. Sosnowchik, L.W. Lin, Appl. Phys. Lett. 90, 093101 (2007)

    Article  ADS  Google Scholar 

  14. Y. Xia, P. Yang, Y. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F.L. Kim, H.Q. Yan, Adv. Mater. 15, 353 (2003)

    Article  Google Scholar 

  15. D. Li, J.T. McCann, Y.N. Xia, M. Marquez, J. Am. Ceram. Soc. 89, 1861 (2006)

    Article  Google Scholar 

  16. A. Greiner, J.H. Wendorff, Chem. Int. Ed. 46, 5670 (2007)

    Article  Google Scholar 

  17. J.D. Schiffman, C.L. Schauer, Polym. Rev. 48, 317 (2008)

    Article  Google Scholar 

  18. J.L. Shui, J.C.M. Li, Nano Lett. 9, 1307 (2009)

    Article  ADS  Google Scholar 

  19. X. Lu, C. Wang, Y. Wei, Small 5, 2349 (2009)

    Article  ADS  Google Scholar 

  20. X.Q. Shen, M.Q. Liu, F.Z. Song, X.F. Meng, J. Sol-Gel Sci. Technol. 53, 448 (2010)

    Article  Google Scholar 

  21. P. Veverka, K. Knížek, E. Pollert, J. Boháček, S. Vasseur, E. Duguet, J. Portier, J. Magn. Magn. Mater. 309, 106 (2007)

    Article  ADS  Google Scholar 

  22. X.H. He, Q.Q. Zhang, Z.Y. Ling, Mater. Lett. 57, 3031 (2003)

    Article  Google Scholar 

  23. E.C. Stoner, E.P. Wohlfarth, IEEE Trans. Magn. 27, 3475 (1991)

    Article  ADS  Google Scholar 

  24. C.S. Lin, C.C. Huang, T.H. Huang, G.P. Wang, C.H. Peng, Mater. Sci. Eng. B 139, 24 (2007)

    Article  Google Scholar 

  25. R. Nawathey-Dikshit, S.R. Shinde, S.B. Ogale, S.D. Kulkarni, S.R. Sainkar, S.K. Date, Appl. Phys. Lett. 68, 3491 (1996)

    Article  ADS  Google Scholar 

  26. S.W. Lee, S.Y. An, I.B. Shim, C.S. Kim, J. Magn. Magn. Mater. 290–291, 231 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangqian Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, X., Liu, M., Song, F. et al. Effects of La–Zn substitution on microstructure and magnetic properties of strontium ferrite nanofibers. Appl. Phys. A 104, 109–116 (2011). https://doi.org/10.1007/s00339-011-6294-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6294-3

Keywords

Navigation