Skip to main content
Log in

Synaptic behaviors and modeling of a metal oxide memristive device

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanoscale memristive devices using tungsten oxide as the switching layer have been fabricated and characterized. The devices show the characteristics of a flux-controlled memristor such that the conductance change is governed by the history of the applied voltage signals, leading to synaptic behaviors including long-term potentiation and depression. The memristive behavior is attributed to the migration of oxygen vacancies upon bias which modulates the interplay between Schottky barrier emission and tunneling at the WO X /electrode interface. A physical model incorporating ion drift and diffusion effects using an internal state variable representing the area of the conductive region has been proposed to explain the observed memristive behaviors. A SPICE model has been further developed that can be directly incorporated into existing circuit simulators. This type of device can be fabricated with low-temperature processes and has potential applications in synaptic computations and as analog circuit components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971)

    Article  Google Scholar 

  2. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)

    Article  ADS  Google Scholar 

  3. S.H. Jo, K.H. Kim, W. Lu, Nano Lett. 9, 870 (2009)

    Article  ADS  Google Scholar 

  4. J. Borghetti, Z. Li, J. Straznicky, X. Li, D.A.A. Ohlberg, W. Wu, D.R. Stewart, R.S. Williams, Proc. Natl. Acad. Sci. USA 106, 1699 (2009)

    Article  ADS  Google Scholar 

  5. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nano Lett. 10, 1297 (2010)

    Article  ADS  Google Scholar 

  6. J. Borghetti, G.S. Snider, P.J. Kuekes, J.J. Yang, D.R. Stewart, R.S. Williams, Nature 464, 873 (2010)

    Article  ADS  Google Scholar 

  7. Y.V. Pershin, M. Di Ventra, IEEE Trans. Circuits. Syst. I, Regul. Pap. 57, 1857 (2010)

    Article  MathSciNet  Google Scholar 

  8. M.N. Kozicki, C. Gopalan, M. Alakrishnan, M. Mitkova, IEEE Trans. Nanotechnol. 5, 535 (2006)

    Article  ADS  Google Scholar 

  9. C. Kügeler, R. Rosezin, R. Weng, R. Waser, S. Menzel, B. Klopstra, U. Böttger, 2009 IEEE-NANO, p. 900 (2009)

  10. L.O. Chua, S.M. Kang, Proc. IEEE 64, 209 (1976)

    Article  MathSciNet  Google Scholar 

  11. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Nat. Nanotechnol. 3, 429 (2008)

    Article  Google Scholar 

  12. Z. Biolek, D. Biolek, V. Violkova, Radioengineering 18, 2 (2009)

    Google Scholar 

  13. S.H. Jo, K.H. Kim, W. Lu, Nano Lett. 9, 496 (2009)

    Article  ADS  Google Scholar 

  14. D.M. Strukov, R.S. Williams, Appl. Phys. A 94, 515 (2009)

    Article  ADS  Google Scholar 

  15. D.B. Strukov, J.L. Borghetti, R.S. Williams, Small 5, 1058 (2009)

    Article  Google Scholar 

  16. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Nat. Mater. 5, 312 (2006)

    Article  ADS  Google Scholar 

  17. D.S. Shang, L. Shi, J.R. Sun, G.B. Shen, F. Zhuge, R.W. Li, Y.G. Zhao, Appl. Phys. Lett. 96, 072103 (2010)

    Article  ADS  Google Scholar 

  18. Y.V. Pershin, M. Di Ventra, IEEE Trans. Circuits. Syst. I, Regul. Pap. 57, 1857 (2010)

    Article  MathSciNet  Google Scholar 

  19. Y.V. Pershin, S. La Fontaine, M. Di Ventra, Phys. Rev. E 80, 021926 (2009)

    Article  ADS  Google Scholar 

  20. R. Sohal, C. Walczyk, P. Zaumseil, D. Wolansky, A. Fox, B. Tillack, H.-J. Müssig, T. Schroeder, Thin Solid Films 517, 4534 (2009)

    Article  ADS  Google Scholar 

  21. C. Bittencourt, R. Landers, E. Llobet, X. Correig, J. Calderer, Semicond. Sci. Technol. 17, 522 (2002)

    Article  ADS  Google Scholar 

  22. J.H. Joo, J.M. Seon, Y.C. Jeon, K.Y. Oh, J.S. Roh, J.J. Kim, Appl. Phys. Lett. 70, 3053 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Lu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 148 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, T., Jo, SH., Kim, KH. et al. Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A 102, 857–863 (2011). https://doi.org/10.1007/s00339-011-6296-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6296-1

Keywords

Navigation