Skip to main content
Log in

Thermodynamic stability of binary nanocrystalline alloys: analysis of solute and excess vacancy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Regarding that the excess volume in grain boundaries (GBs) is released as the vacancies which are accommodated by the crystal bulk during grain growth, a free-energy function for binary nanocrystalline solid solution is proposed, based on the pairwise nearest-neighbor interactions. The model, for the given composition and temperature, predicts an equilibrium grain size, subjected to a mixed effect due to solute segregation and due to excess vacancies. Furthermore, excess-vacancy-inhibited grain coarsening can be attained, which plays a minor role in holding the thermal stability of nanocrystalline alloys, as compared to the effect of solute segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, Prog. Mater. Sci. 33, 233 (1989)

    Article  Google Scholar 

  2. K. Lu, Mater. Sci. Eng., R Rep. 16, 1611 (1996)

    Article  Google Scholar 

  3. J. Weissmüller, Nanostruct. Mater. 3, 261 (1993)

    Article  Google Scholar 

  4. R. Kirchheim, Acta Mater. 50, 413 (2002)

    Article  Google Scholar 

  5. F. Liu, R. Kirchheim, Scr. Mater. 51, 521 (2004)

    Article  Google Scholar 

  6. F. Liu, R. Kirchheim, J. Cryst. Growth 264, 385 (2004)

    Article  ADS  Google Scholar 

  7. Y.Z. Chen, G. Csiszár, J. Cizek, C. Borchers, T. Ungár, S. Goto, R. Kirchheim, Scr. Mater. 64, 390 (2011)

    Article  Google Scholar 

  8. Y.Z. Chen, A. Herz, R. Kirchheim, Mater. Sci. Forum 667-669, 265 (2010)

    Article  Google Scholar 

  9. Y. Estrin, G. Gottstein, L.S. Shvindlerman, Scr. Mater. 41, 385 (1999)

    Article  Google Scholar 

  10. Y. Estrin, G. Gottstein, L.S. Shvindlerman, Acta Mater. 47, 3541 (1999)

    Article  Google Scholar 

  11. Y. Estrin, G. Gottstein, E. Rabkin, L.S. Shvindlerman, Scr. Mater. 43, 141 (2000)

    Article  Google Scholar 

  12. C.E. Krill III, L. Helfen, D. Michels, H. Natter, A. Fitch, O. Masson, R. Birringer, Phys. Rev. Lett. 86, 842 (2001)

    Article  ADS  Google Scholar 

  13. Y. Kuru, M. Wohlschlögel, U. Welzel, E.J. Mittemeijer, Appl. Phys. Lett. 95, 163112 (2009)

    Article  ADS  Google Scholar 

  14. L.S. Shvindlerman, G. Gottstein, V.A. Ivanov, D.A. Molodov, D. Kolesnikov, W. Lojkowsi, J. Mater. Sci. 41, 7725 (2006)

    Article  ADS  Google Scholar 

  15. H.J. Leamy, G.E. Pike, C.H. Seager, Grain Boundaries in Semiconductors (North-Holland, Amsterdam, 1982)

    Google Scholar 

  16. R.C. Pond, V. Vitek, Proc. R. Soc. London, Ser. B 357, 453 (1977)

    Article  ADS  Google Scholar 

  17. K.L. Merkle, D.J. Smith, Phys. Rev. Lett. 59, 2887 (1987)

    Article  ADS  Google Scholar 

  18. J.R. Trelewicz, C.A. Schuh, Phys. Rev. B 79, 094112 (2009)

    Article  ADS  Google Scholar 

  19. A. Kirchner, B. Kieback, Scr. Mater. 64, 406 (2011)

    Article  Google Scholar 

  20. B. Färber, E. Cadel, A. Menand, G. Schmitz, R. Kirchheim, Acta Mater. 48, 789 (2000)

    Article  Google Scholar 

  21. D.K. Shi, Fundamentals of Materials Science, 2nd edn. (China Machine Press, Beijing, 2003)

    Google Scholar 

  22. C.C. Koch, R.O. Scattergood, K.A. Darling, J.E. Semones, J. Mater. Sci. 43, 7264 (2008)

    Article  ADS  Google Scholar 

  23. C.E. Krill, R. Klein, S. Janes, R. Birringer, Mater. Sci. Forum 179, 443 (1995)

    Article  Google Scholar 

  24. K.A. Darling, R.N. Chan, P.Z. Wong, J.E. Semones, R.O. Scattergood, C.C. Koch, Scr. Mater. 59, 530 (2008)

    Article  Google Scholar 

  25. F. Liu, Mater. Lett. 59, 1458 (2005)

    Article  Google Scholar 

  26. J. Weissmüller, W. Krauss, T. Haubold, R. Birringer, H. Gleiter, Nanostruct. Mater. 1, 439 (1992)

    Article  Google Scholar 

  27. C.E. Krill III, H. Ehrhardt, R. Birringer, Z. Metallkd. 96, 1134 (2005)

    Google Scholar 

  28. Z. Chen, F. Liu, K. Zhang Y.Z. Ma, G.C. Yang, Y.H. Zhou, J. Cryst. Growth 313, 81 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, M.M., Liu, F. & Zhang, K. Thermodynamic stability of binary nanocrystalline alloys: analysis of solute and excess vacancy. Appl. Phys. A 105, 927–934 (2011). https://doi.org/10.1007/s00339-011-6501-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6501-2

Keywords

Navigation