Skip to main content
Log in

Aqueous chemical growth of free standing vertical ZnO nanoprisms, nanorods and nanodiskettes with improved texture co-efficient and tunable size uniformity

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Tuning the morphology, size and aspect ratio of free standing ZnO nanostructured arrays by a simple hydrothermal method is reported. Pre-coated ZnO seed layers of two different thicknesses (≈350 nm or 550 nm) were used as substrates to grow ZnO nanostructures for the study. Various parameters such as chemical ambience, pH of the solution, strength of the Zn2+ atoms and thickness of seed bed are varied to analyze their effects on the resultant ZnO nanostructures. Vertically oriented hexagonal nanorods, multi-angular nanorods, hexagonal diskette and popcorn-like nanostructures are obtained by altering the experimental parameters. All the produced nanostructures were analysed by X-ray powder diffraction analysis and found to be grown in the (002) orientation of wurtzite ZnO. The texture co-efficient of ZnO layer was improved by combining a thick seed layer with higher cationic strength. Surface morphological studies reveal various nanostructures such as nanorods, diskettes and popcorn-like structures based on various preparation conditions. The optical property of the closest packed nanorods array was recorded by UV-VIS spectrometry, and the band gap value simulated from the results reflect the near characteristic band gap of ZnO. The surface roughness profile taken from the Atomic Force Microscopy reveals a roughness of less than 320 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Kim, D. Andeen, F.F. Lange, Adv.Mater. 18, 2453–2457 (2006)

    Article  Google Scholar 

  2. Q. Ahsanulhaq, A. Umar, Y.B. Hahn, Nanotechnol. 18, 115603 (2007)

    Article  ADS  Google Scholar 

  3. C. Jiang, W. Zhang, G. Zou, W. Yu, Q. Yitai, J. Phys. Chem. B. 109(4), 1361 (2005)

    Article  Google Scholar 

  4. D. Ito, M.L. Jespersen, J.E. Hutchison, ACSNano 2(10), 2001–2006 (2008)

    Google Scholar 

  5. J. Song, S. Lim, J. Phys. Chem. C 111, 596 (2007)

    Article  Google Scholar 

  6. J. Ge, B. Tang, L. Zhuo, Z. Shi, Nanotechnol. 17, 171316 (2006)

    Article  ADS  Google Scholar 

  7. H.T. Ng, J. Han, T. Yamada, P. Nguyen, Y.P. Chen, M. Meyyappan, Nano Lett. 4, 1247–1252 (2004)

    Article  ADS  Google Scholar 

  8. M.S. Arnold, P. Avouris, Z.W. Pan, Z.L. Wang, J. Phys.Chem. B 107, 659–663 (2003)

    Article  Google Scholar 

  9. J.C. Johnson, K.P. Knutsen, H.Q. Yan, M. Law, Y.F. Zhang, P.D. Yang, R.J. Saykally, Nano Lett. 4, 197–204 (2004)

    Article  ADS  Google Scholar 

  10. P. Hari, D. Spencer, Phys.Status Solidi C 6(S1), S150–S153 (2009)

    Article  ADS  Google Scholar 

  11. S. Ashoka, G. Nagaraju, C.N. Tharamani, G.T. Chandrappa, Mater Lett. 36, 873–876 (2009)

    Article  Google Scholar 

  12. X.M. Sun, X. Chen, Z.X. Deng, Y.D. Li, Mat. Chem Phys. 78, 99–104 (2002)

    Article  Google Scholar 

  13. Y. Lee, Y. Zhang, S.L.G. Ng, F.C. Kartwidjaja, J. Wang, J. Am. Ceram. Soc. 92(9), 1940–1945 (2009)

    Article  Google Scholar 

  14. P. Mitra, J. Khan, Mat. Chem. Phys. 98, 279–284 (2006)

    Article  Google Scholar 

  15. X.D. Gao, X.M. Li, W.D. Yu, J. Solid State. Chem 177, 3830–3834 (2004)

    Article  ADS  Google Scholar 

  16. L. Vayssieres, Int. J. of Nanotechnology 1, 1 (2004)

    Google Scholar 

  17. T. Mahalingam, K.M. Lee, S. Lee, Y. Ahn, J.-Y. Park, K.H. Koh, K.H. Park, Nanotechnology 17, 1–5 (2006)

    Article  Google Scholar 

  18. W. Peng, X. Qu, G. Cong, Z. Wang, Cryst. Growth. Des. 6, 1548 (2006)

    Google Scholar 

  19. H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, D. Que, J. Phys. Chem. B 108, 1355 (2004)

    Google Scholar 

  20. Y. Tak, K. Yong, J.Phys. Chem. B 109, 19263–19269 (2005)

    Article  Google Scholar 

  21. M. Wang, E.J. Kim, E.W. Shin, J.S. Chung, S.H. Hahn, C. Park, J.Phys.Chem. C 112, 1920–1924 (2008)

    Article  Google Scholar 

  22. L. Vayssieres, K. Keis, A. Hagfeldt, S.E. Lindquist, Chem. Mater. 15, 622 (2001)

    Google Scholar 

  23. J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, C. Yan, Chem.Mater. 14, 4172 (2002)

    Article  Google Scholar 

  24. A. Wei, X.W. Sun, C.X. Xu, Z.L. Dong, Y. Yang, S.T. Tan, W. Huang, Nanotechnology 17, 1740 (2006)

    Article  ADS  Google Scholar 

  25. Y. Fang, Q. Pang, X. Wen, J. Wang, S. Yang, Small 2, 612 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ravi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ram, S.D.G., Ravi, G., Athimoolam, A. et al. Aqueous chemical growth of free standing vertical ZnO nanoprisms, nanorods and nanodiskettes with improved texture co-efficient and tunable size uniformity. Appl. Phys. A 105, 881–890 (2011). https://doi.org/10.1007/s00339-011-6518-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6518-6

Keywords

Navigation