Skip to main content
Log in

Thermo-electric-induced dichroism in ion-exchanged glasses: a candidate mechanism for the alignment of silver nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, the alignment mechanism of silver nanoparticles on the surface of a heated ion-exchanged glass, in presence of an external uniform DC electric field \((\vec{E}_{0})\) parallel to the surface of the sample, is studied. At high temperature, the ionic silver clusters reduce to neutral ones and move toward the surface. Simultaneously, due to the external electric field the clusters interact with other ones as induced electrical dipoles. This leads to alignment of nanoparticles along \(\vec{E}_{0}\) and formation of a chain-like conductive structure, which makes the sample dichroic. Taking into account the matrix surface viscosity and using the method of image dipoles to model the influence of the substrate on the dipole interactions, we give an interpretation about the relative equilibrium positions of generated nanoclusters and consequently the formation mechanism of the chain-like structure on the surface of the ion-exchanged glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Chakraborty, J. Mater. Sci. 33, 2235 (1998)

    Article  ADS  Google Scholar 

  2. F. Gonella, P. Mazzoldi, Handbook of Nanostructured Materials and Nanotechnology (Academic Press, San Diego, 2000)

    Google Scholar 

  3. R. Rangel-Rojo, J.A. Reyes-Esqueda, C. Torres-Torres, A. Oliver, L. Rodriguez-Fernandez, A. Crespo-Sosa, J.C. Cheang-Wong, J. McCarthy, H.T. Bookey, A.K. Kar, in Silver Nanoparticles, ed. by Pozo, D., (InTech, Rijeka, 2010). ISBN: 978-953-307-028-5. Available from: http://www.intechopen.com/articles/show/title/linear-and-nonlinear-optical-properties-of-aligned-elon-gated-silver-nanoparticles-embedded-in-silica

    Google Scholar 

  4. A. Tervonen, B.R. West, S. Honkanen, Opt. Eng. 50, 071107 (2011)

    Article  ADS  Google Scholar 

  5. S. Honkanen, B.R. West, S. Yliniemi, P. Madasamy, M. Morrell, J. Auxier, A. Schülzgen, N. Peyghambarian, J. Carriere, J. Frantz, R. Kostuk, J. Castro, D. Geraghty, Phys. Chem. Glasses 47, 110 (2006)

    Google Scholar 

  6. S.I. Najafi, Introduction to Glass Integrated Optics (Artech House, Norwood, 1992)

    Google Scholar 

  7. J.L. Jackel, Appl. Opt. 27, 472 (1988)

    Article  ADS  Google Scholar 

  8. C.R. Lavers, K. Itoh, S.C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, T. Stout, Sens. Actuators B 69, 85 (2000)

    Article  Google Scholar 

  9. E. Borsella, G. De Marchi, F. Caccavale, F. Gonella, G. Mattei, P. Mazzoldi, G. Battaglin, A. Quaranta, A. Miotello, J. Non-Cryst. Solids 253, 261 (1999)

    Article  ADS  Google Scholar 

  10. G. Battaglin, E. Borsella, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, Proc. SPIE 3405, 533 (1997)

    Article  ADS  Google Scholar 

  11. U. Kriebig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Google Scholar 

  12. A. Nahal, H.R.M. Khalesifard, Opt. Mater. 29, 987 (2007)

    Article  ADS  Google Scholar 

  13. M. Weisser, F. Thoma, B. Menges, U. Langbein, S. Mittlerneher, Opt. Commun. 153, 27 (1998)

    Article  ADS  Google Scholar 

  14. L.A. Ageev, V.K. Miloslavsky, Opt. Eng. 34, 960 (1995)

    Article  ADS  Google Scholar 

  15. L.A. Ageev, V.K. Miloslavsky, A. Nahal, J. Opt. A, Pure Appl. Opt. 1, 173 (1999)

    Article  ADS  Google Scholar 

  16. http://www.faqs.org/patents/app/20080230826

  17. L.A. Ageev, V.K. Miloslavsky, A. Nahal, Pure Appl. Opt. 7, L1 (1998)

    Article  ADS  Google Scholar 

  18. V.K. Miloslavsky, A. Nahal, L.A. Ageev, Opt. Commun. 147, 436 (1998)

    Article  ADS  Google Scholar 

  19. A. Nahal, H.R.M. Khalesifard, J. Mostafavi-Amjad, Appl. Phys. B 79, 513 (2004)

    Article  Google Scholar 

  20. A. Nahal, K. Shapoori, Appl. Surf. Sci. 255, 7946 (2009)

    Article  ADS  Google Scholar 

  21. A. Nahal, A. Jalehdoost, Kh. Hassani, A. Farokhniaee, Eur. Phys. J. Appl. Phys. 53, 10701 (2011)

    Article  ADS  Google Scholar 

  22. F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G.W. Arnold, G. Battaglin, P. Calvelli, R. Polloni, B. Bertonecello, R.F. Haglund Jr., Appl. Phys. Lett. 69, 3101 (1996)

    Article  ADS  Google Scholar 

  23. M. Miotello, M. Bonelli, G. De Marchi, G. Mattei, P. Mazzoldi, C. Sada, F. Gonella, Appl. Phys. Lett. 79, 2456 (2001)

    Article  ADS  Google Scholar 

  24. A. Nahal, J. Mostafavi-Amjad, A. Ghods, M.R.H. Khajehpour, S.N.S. Reihani, M.R. Kolahchi, J. Appl. Phys. 100, 053503 (2006)

    Article  ADS  Google Scholar 

  25. A.L. Stepanov, V.N. Popok, D.E. Hole, A.A. Bukharaev, Phys. Solid State 43, 2192 (2001)

    Article  ADS  Google Scholar 

  26. C. Mohr, M. Dubiel, H. Hofmeister, J. Phys., Condens. Matter 13, 525 (2001)

    Article  ADS  Google Scholar 

  27. A. Berger, J. Non-Cryst. Solids 151, 88 (1992)

    Article  ADS  Google Scholar 

  28. M. Tomozawa, J.F. Cordaro, M. Singh, J. Non-Cryst. Solids 40, 189 (1980)

    Article  ADS  Google Scholar 

  29. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1999)

    MATH  Google Scholar 

  30. S.K. Saha, Phys. Rev. B 69, 125416 (2004)

    Article  ADS  Google Scholar 

  31. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, London, 1967)

    MATH  Google Scholar 

  32. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements (Pergamon, Oxford, 1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arashmid Nahal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nahal, A., Talebi, R. & Miri, M. Thermo-electric-induced dichroism in ion-exchanged glasses: a candidate mechanism for the alignment of silver nanoparticles. Appl. Phys. A 106, 941–947 (2012). https://doi.org/10.1007/s00339-011-6714-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6714-4

Keywords

Navigation