Skip to main content
Log in

Phase transformation of nanostructured titanium dioxide thin films grown by sol–gel method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanostructured TiO2 thin films were deposited on quartz glass at room temperature by sol–gel dip coating method. The effects of annealing temperature between 200C to 1100C were investigated on the structural, morphological, and optical properties of these films. The X-ray diffraction results showed that nanostructured TiO2 thin film annealed at between 200C to 600C was amorphous transformed into the anatase phase at 700C, and further into rutile phase at 1000C. The crystallite size of TiO2 thin films was increased with increasing annealing temperature. From atomic force microscopy images it was confirmed that the microstructure of annealed thin films changed from column to nubbly. Besides, surface roughness of the thin films increases from 1.82 to 5.20 nm, and at the same time, average grain size as well grows up from about 39 to 313 nm with increase of the annealing temperature. The transmittance of the thin films annealed at 1000 and 1100C was reduced significantly in the wavelength range of about 300–700 nm due to the change of crystallite phase. Refractive index and optical high dielectric constant of the n-TiO2 thin films were increased with increasing annealing temperature, and the film thickness and the optical band gap of nanostructured TiO2 thin films were decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C 1, 1 (2000)

    Article  Google Scholar 

  2. B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  3. E.W. Mcfarland, J. Tang, Nature 421, 616 (2003)

    Article  ADS  Google Scholar 

  4. H. Tang, K. Prasad, R. Sanjines, F. Levy, Sens. Actuators B 26, 71 (1995)

    Article  Google Scholar 

  5. J.H. Braun, J. Coat. Technol. 69, 59 (1997)

    Article  Google Scholar 

  6. U. Diebold, Surf. Sci. Rep. 48, 53 (2003)

    Article  ADS  Google Scholar 

  7. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature 388, 431 (1997)

    Article  ADS  Google Scholar 

  8. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  ADS  Google Scholar 

  9. G.-B. Wang, M.-G. Fu, B. Lu, G.-P. Du, L. Li, X.-M. Qin, W.-Z. Shi, Appl. Phys. A 100, 1169 (2010)

    Article  ADS  Google Scholar 

  10. I.N. Kholmanov, E. Barborini, E. Vinati, P. Piseri, A. Podesta, C. Ducati, C. Lenardi, P. Milani, Nanotechnology 14, 1168 (2003)

    Article  ADS  Google Scholar 

  11. B. Karunagaran, P. Uthirakumar, S.J. Chung, S. Velumani, E.K. Suh, Mater. Charact. 58, 680 (2007)

    Article  Google Scholar 

  12. J. Alami, K. Sarakinos, F. Uslu, C. Klever, J. Dukwen, M. Wuttig, J. Phys. D, Appl. Phys. 42, 115204 (2009)

    Article  ADS  Google Scholar 

  13. A.S. Barnard, L.A. Curtiss, Nano Lett. 5, 1261 (2005)

    Article  ADS  Google Scholar 

  14. L.X. Chen, T. Rajh, W. Jäger, J. Nedeljkovic, M.C. Thurnauer, J. Synchrotron Radiat. 6, 445 (1999)

    Article  Google Scholar 

  15. F. Armani, M. Gougis, S.A. Impey, A.C. James, K. Lawson, L. Lihrmann, M. Stock, S. Dunn, Mater. Lett. 64, 140 (2010)

    Article  Google Scholar 

  16. H.A. Bullen, S.J. Garrett, Nano Lett. 2, 739 (2002)

    Article  ADS  Google Scholar 

  17. H.D. Jang, S.K. Kim, S.J. Kim, J. Nanopart. Res. 3, 141 (2001)

    Article  Google Scholar 

  18. Y.Q. Hou, D.M. Zhuang, G. Zhang, M. Zhao, M.S. Wu, Appl. Surf. Sci. 218, 98 (2003)

    Article  ADS  Google Scholar 

  19. H. Takikawa, T. Matsui, T. Sakakibara, A. Bendavid, P.J. Martin, Thin Solid Films 348, 145 (1999)

    Article  ADS  Google Scholar 

  20. H.S. Kim, D.C. Gilmer, S.A. Campbell, D.L. Polla, Appl. Phys. Lett. 69, 3860 (1996)

    Article  ADS  Google Scholar 

  21. M.R. Hoffmann, S.R. Martin, D.W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)

    Article  Google Scholar 

  22. N.R. Mathews, E.R. Morales, M.A. Cortes-Jacome, J.A.T. Antonio, Sol. Energy 83, 1499 (2009)

    Article  Google Scholar 

  23. M. Ferroni, V. Guidi, G. Martinelli, P. Nelli, G. Sberveglieri, Sens. Actuators B 44, 499 (1997)

    Article  Google Scholar 

  24. T. Hanawa, M. Ota, Appl. Surf. Sci. 55, 269 (1992)

    Article  ADS  Google Scholar 

  25. J.X. Liu, D.Z. Yang, F. Shi, Y.J. Cai, Thin Solid Films 429, 225 (2003)

    Article  ADS  Google Scholar 

  26. J.K. Lee, H.S. Jung, Y.Q. Wang, N.D. Theodore, T.L. Alford, M. Nastasi, Appl. Phys. A 103, 179 (2011)

    Article  ADS  Google Scholar 

  27. R. Poyato, M.L. Calzada, L. Pardo, Appl. Phys. A 80, 369 (2005)

    Article  ADS  Google Scholar 

  28. M. Zaharescu, M. Crisan, I. Musevic, J. Sol-Gel Sci. Technol. 13, 769 (1998)

    Article  Google Scholar 

  29. I. Seigo, P. Chen, P. Comte, M.K. Nazeeruddin, P. Liska, P. Péchy, M. Grätzel, Prog. Photovolt. Res. Appl. 15, 603 (2007)

    Article  Google Scholar 

  30. V. Mikhelashvili, G. Eisenstein, J. Appl. Phys. 89, 3256 (2001)

    Article  ADS  Google Scholar 

  31. X.H. Xu, M. Wang, Y. Hou, S.R. Zhao, H. Wang, D. Wang, S.X. Shang, Cryst. Res. Technol. 37, 431 (2002)

    Article  Google Scholar 

  32. C.W. Jia, E.Q. Xie, J.G. Zhao, H.G. Duan, J. Appl. Phys. 101, 093509 (2007)

    Article  ADS  Google Scholar 

  33. D.H. Kim, H.S. Hong, S.J. Kim, J.S. Song, K.S. Lee, J. Alloys Compd. 375, 259 (2004)

    Article  Google Scholar 

  34. M. Okuya, K. Nakade, S. Kaneko, Sol. Energy Mater. Sol. Cells 70, 425 (2002)

    Article  Google Scholar 

  35. A. Nakaruk, D. Ragazzon, C.C. Sorrell, Thin Solid Films 518, 3735 (2010)

    Article  ADS  Google Scholar 

  36. N. Negishi, K. Takeuchi, Mater. Lett. 38, 150 (1999)

    Article  Google Scholar 

  37. D.J. Won, C.H. Wang, H.K. Jang, D.J. Choi, Appl. Phys. A 73, 595 (2001)

    Article  ADS  Google Scholar 

  38. T. Hashimoto, T. Yoko, S. Saka, Bull. Chem. Soc. Jpn. 67, 653 (1994)

    Article  Google Scholar 

  39. D. Mardare, G.I. Rusu, Mater. Lett. 56, 210 (2002)

    Article  Google Scholar 

  40. H. Tang, K. Prasad, R. Sanjines, P.E. Schmid, F. Levy, J. Appl. Phys. 75(4), 2042 (1994)

    Article  ADS  Google Scholar 

  41. M.H. Suhail, G.M. Rao, S. Mohan, J. Appl. Phys. 71, 1421 (1992)

    Article  ADS  Google Scholar 

  42. R. Swanepoel, J. Phys. E, Sci. Instrum. 16, 1214 (1983)

    Article  ADS  Google Scholar 

  43. J. Tauc, Mater. Res. Bull. 5, 721 (1970)

    Article  Google Scholar 

  44. S. Sönmezoğlu, G. Çankaya, N. Serin, Int. J. Nat. Eng. Sci. 5(13), 57 (2011)

    Google Scholar 

  45. E.M. Assim, J. Alloys Compd. 463, 55 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savaş Sönmezoğlu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sönmezoğlu, S., Çankaya, G. & Serin, N. Phase transformation of nanostructured titanium dioxide thin films grown by sol–gel method. Appl. Phys. A 107, 233–241 (2012). https://doi.org/10.1007/s00339-011-6749-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6749-6

Keywords

Navigation