Skip to main content
Log in

Electric and magnetic excitations in anisotropic broadside-coupled triangular-split-ring resonators

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electric and magnetic resonances of anisotropic broadside-coupled triangular-split-ring resonators are studied for different incident wave excitations. It is shown that the higher order modes exist in both electric and magnetic resonances. It is observed that the incident electric field couples to the magnetic resonance of the designed structure under different excitations. Multiple resonance features due to the anisotropy of the structure are found in the case of different excitations and the nature of these resonances can be regulated as either an electric or a magnetic mode for different frequencies. In this way, a resonant effective permittivity or permeability can be obtained. Hence, controllable properties of the constitutive material parameters (i.e. electric or magnetic resonances, negative values, etc.) can be determined by changing the incident wave excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10, 509 (1968)

    Article  ADS  Google Scholar 

  2. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000)

    Article  ADS  Google Scholar 

  3. S. Ramakrishna, Physics of negative refractive index materials. Rep. Prog. Phys. 68, 449 (2005)

    Article  ADS  Google Scholar 

  4. N. Engheta, R.W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley/IEEE Press, Piscataway, 2006)

    Google Scholar 

  5. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075 (1999)

    Article  ADS  Google Scholar 

  6. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77 (2001)

    Article  ADS  Google Scholar 

  7. D.R. Smith, S. Schultz, P. Markos, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from refection and transmission coefficients. Phys. Rev. B 65, 195104 (2002)

    Article  ADS  Google Scholar 

  8. P. Gay-Balmaz, O.J.F. Martin, Electromagnetic resonances in individual and coupled split-ring resonators. J. Appl. Phys. 92, 2929 (2002)

    Article  ADS  Google Scholar 

  9. K. Aydin, K. Guven, L. Zhang, M. Kafesaki, C.M. Soukoulis, E. Ozbay, Experimental observation of true left-handed transmission peaks in metamaterials. Opt. Lett. 29, 2623 (2004)

    Article  ADS  Google Scholar 

  10. T. Weiland, R. Schuhmann, R.B. Greegor, C.G. Parazzoli, A.M. Vetter, D.R. Smith, D.C. Vier, S. Schultz, Ab initio numerical simulation of left-handed metamaterials: comparison of calculations and experiments. J. Appl. Phys. 90, 5419 (2001)

    Article  ADS  Google Scholar 

  11. R.W. Ziolkowski, Design, fabrication, and testing of double negative metamaterials. IEEE Trans. Antennas Propag. 51, 1516 (2003)

    Article  ADS  Google Scholar 

  12. K. Guven, M. Kafesaki, C.M. Soukoulis, E. Ozbay, Investigation of magnetic resonances for different split-ring resonator parameters and designs. New J. Phys. 7, 168.1 (2005)

    Google Scholar 

  13. X. Chen, T.M. Grzegorczyk, B.-I. Wu, J. Pacheco, J.A. Kong, Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E 70, 016608.1 (2004)

    ADS  Google Scholar 

  14. S. Linden, C. Enkirch, M. Wegner, J. Zhou, T. Koschny, C.M. Soukoulis, Magnetic response in metamaterials at 100 THz. Science 306, 1351 (2004)

    Article  ADS  Google Scholar 

  15. D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617.1 (2005)

    ADS  Google Scholar 

  16. K. Aydin, E. Ozbay, Identifying magnetic response of split-ring resonators at microwave frequencies. Opto-Electron. Rev. 14, 193 (2006)

    Article  ADS  Google Scholar 

  17. Y. Liu, N. Fang, D. Wu, C. Sun, X. Zhang, Symmetric and antisymmetric modes of electromagnetic resonators. Appl. Phys. A, Mater. Sci. Process. 87, 171 (2007)

    Article  ADS  Google Scholar 

  18. H.-T. Chen, J.F. O’Hara, A.J. Taylor, R.D. Averitt, C. Highstrete, M. Lee, W.J. Padilla, Complementary planar terahertz metamaterials. Opt. Express 15, 1084 (2007)

    Article  ADS  Google Scholar 

  19. T.F. Gundogdu, M. Gokkavvas, K. Guven, M. Kafesaki, C.M. Soukoulis, E. Ozbay, Simulation and micro-fabrication of optically switchable split ring resonators. Photonics Nanostruct. Fundam. Appl. 5, 106 (2007)

    Article  ADS  Google Scholar 

  20. R. Marques, F. Medina, R. Rafii-El-Idrissi, Role of bianisotropy in negative permeability and left-handed metamaterials. Phys. Rev. B 65, 144440.1 (2002)

    ADS  Google Scholar 

  21. R. Marques, F. Mesa, J. Martel, F. Medina, Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design: theory and experiment. IEEE Trans. Antennas Propag. 51, 2572 (2003)

    Article  ADS  Google Scholar 

  22. J.D. Baena, R. Marques, F. Medina, J. Martel, Artificial magnetic metamaterial design by using spiral resonators. Phys. Rev. B 69, 014402 (2004)

    Article  ADS  Google Scholar 

  23. T. Hao, C.J. Stevens, D.J. Edwards, Optimisation of metamaterials by Q factor. Electron. Lett. 41, 653 (2005)

    Article  Google Scholar 

  24. F. Bilotti, A. Toscano, L. Vegni, Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples. IEEE Trans. Antennas Propag. 55, 2258 (2007)

    Article  ADS  Google Scholar 

  25. I. Mirza, J.N. Sabas, S. Shi, D.W. Prather, Experimental demonstration of metamaterial-based phase modulation. Prog. Electromagn. Res. 93, 1 (2009)

    Article  Google Scholar 

  26. J. Wang, S. Qu, J. Zhang, H. Ma, Y. Yang, C. Gu, X. Wu, Z. Xu, A tunable left-handed metamaterial based on modified broadside-coupled split-ring resonators. Prog. Electromagn. Res. Lett. 6, 35 (2009)

    Article  Google Scholar 

  27. E. Ekmekci, A.C. Strikwerda, K. Fan, G. Keiser, X. Zhang, G. Turhan-Sayan, R.D. Averitt, Frequency tunable terahertz metamaterials using broadside coupled split-ring resonators. Phys. Rev. B 83, 193103.1 (2011)

    Article  ADS  Google Scholar 

  28. N. Katsarakis, T. Koschny, M. Kafesaki, E.N. Economou, C.M. Soukoulis, Electric coupling to the magnetic resonance of split ring resonators. Appl. Phys. Lett. 84, 2943 (2004)

    Article  ADS  Google Scholar 

  29. X. Chen, B. Wu, J.A. Kong, T.M. Grzegorczyk, Retrieval of the effective constitutive parameters of bianisotropic metamaterials. Phys. Rev. E 71, 046610.1 (2005)

    ADS  Google Scholar 

  30. J. Zhou, T. Koschny, C.M. Soukoulis, Magnetic and electric excitations in split ring resonators. Opt. Express 15, 17881 (2007)

    Article  ADS  Google Scholar 

  31. C. Sabah, Analysis, applications, and a novel design of double negative metamaterials. Ph.D. dissertation, University of Gaziantep, Gaziantep, Turkey (2008)

  32. C. Sabah, A.O. Cakmak, E. Ozbay, S. Uckun, Transmission measurement of a new metamaterial sample with negative refraction index. Physica B, Condens. Matter 405, 2955 (2010)

    Article  ADS  Google Scholar 

  33. C. Sabah, Tunable metamaterial design composed of triangular split ring resonator and wire strip for s- and c-microwave bands. Prog. Electromagn. Res. B 22, 341 (2010)

    Article  Google Scholar 

  34. C. Sabah, Novel, dual band, single and double negative metamaterials: nonconcentric delta loop resonators. Prog. Electromagn. Res. B 25, 225 (2010)

    Article  Google Scholar 

  35. C. Sabah, Multiband planar metamaterials. Microw. Opt. Technol. Lett. 53, 2255 (2011)

    Article  Google Scholar 

  36. C. Sabah, Multi-resonant metamaterial design based on concentric V-shaped magnetic resonators. J. Electromagn. Waves Appl. (2012, accepted)

  37. C. Sabah, Multiband metamaterials based on multiple concentric open ring resonators topology. IEEE J. Sel. Top. Quantum Electron. (2012, accepted)

  38. A.M. Nicolson, G. Ross, Measurement of the intrinsic properties of materials by time domain techniques. IEEE Trans. Instrum. Meas. 19, 377 (1970)

    Article  Google Scholar 

  39. W.B. Weir, Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 62, 33 (1974)

    Article  Google Scholar 

  40. D. Ghodgaonkar, V.V. Varadan, V.K. Varadan, A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies. IEEE Trans. Instrum. Meas. 38, 789 (1989)

    Article  Google Scholar 

  41. www.rogerscorp.com

  42. T. Koschny, P. Markos, D.R. Smith, C.M. Soukoulis, Resonant and antiresonant frequency dependence of the effective parameters of metamaterials. Phys. Rev. E 68, 065602 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cumali Sabah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabah, C. Electric and magnetic excitations in anisotropic broadside-coupled triangular-split-ring resonators. Appl. Phys. A 108, 457–463 (2012). https://doi.org/10.1007/s00339-012-6913-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6913-7

Keywords

Navigation