Skip to main content
Log in

Design and simulation of double-lightly doped MOSCNT using non-equilibrium Green’s function

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we propose a new ohmic-structure of ballistic carbon nanotube field-effect transistors (CNTFETs) in which the source and drain regions are doped stepwise and the device acts as MOSFET like CNTFET (MOSCNT). The number of lightly doped regions and their doping concentrations are optimized to obtain the lowest OFF current. To study the device characteristics, the Poisson–Schrödinger equations are solved self-consistently using the Nonequilibrium Green’s Function (NEGF) formalism in the mode space approach. To find the Hamiltonian matrix, the tight-binding approximation with only p z orbital is used. The obtained results show that the stepwise regions lead to barrier widening due to the reduction in potential gradient. Therefore, the band-to-band tunneling (BTBT) and the ambipolar behavior of the device decrease due to band engineering. This causes to the superior reduction of OFF current and dissipative power. In addition, the device performance shows lower subthreshold swing (SS), smaller drain induced barrier lowering (DIBL), and larger current ratio than that of the previous structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Avouris, Molecular electronics with carbon nanotubes. Acc. Chem. Res. 35(12), 1026–1034 (2002)

    Article  Google Scholar 

  2. J. Guo, M.S. Lundstrom, Role of phonon scattering in carbon nanotube field-effect transistors. Appl. Phys. Lett. 86 (2005)

  3. M.S. Fuhrer, M. Forero, A. Zettl, P.L. McEuen, Ballistic transport in semiconducting carbon nanotubes, in AIP Conference Proceedings, in Electronic Properties of Molecular Nanostructures (2001), pp. 401–404 (link to paper on AIP website)

    Google Scholar 

  4. J. Guo, S. Datta, M.S. Lundstrom, A numerical study of scaling issues for Schottky-Barrier carbon nanotube transistors. IEEE Trans. Electron Devices 51(2), 172–177 (2004)

    Article  ADS  Google Scholar 

  5. Y.M. Lin, J. Appenzeller, J. Knoch, P. Avouris, High-performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans. Nanotechnol. 4(5), 481–489 (2005)

    Article  ADS  Google Scholar 

  6. E.J. Nowak, Maintaining the benefits of CMOS scaling when scaling bogs down. IBM J. Res. Dev. 46(2), 169–180 (2002)

    Article  Google Scholar 

  7. J. Guo, M. Lundstrom, Device simulation of SWNT-FETs, in Carbon Nanotube Electronics (Springer, New York, 2009), pp. 107–132, Chap. 5

    Chapter  Google Scholar 

  8. O. Siyuranga, S. Koswatta, D. Nikonov, M.S. Lundstrom, Computational study of carbon nanotube p-i-n tunnel FETs, in IEEE Int Electron Dev. Meet (2005), pp. 518–521

    Google Scholar 

  9. I. Hassaninia, M.H. Sheikhi, Z. Kordrostami, Simulation of carbon nanotube FETs with linear doping profile near the source and drain contacts. Solid-State Electron. 52, 980–985 (2008)

    Article  ADS  Google Scholar 

  10. S. Heinze, J. Tersoff, P. Avouris, Electrostatic engineering of nanotube transistors for improved performance. Appl. Phys. Lett. 83(24), 5038–5040 (2003)

    Article  ADS  Google Scholar 

  11. R. Yousefi, K. Saghafi, M.K. Moravvej-Farshi, Numerical study of lightly doped drain and source carbon nanotube field-effect transistors. IEEE Trans. Electron Devices 57(4), 765–771 (2010)

    Article  ADS  Google Scholar 

  12. Z. Ren, ‘Nanoscale MOSFETs: physics, simulation, and design. Ph.D. thesis, the Purdue University, USA, 2001

  13. J. Guo, Carbon nanotube electronics: modeling, physics and applications. Ph.D. thesis, the Purdue University, USA, 2004

  14. Y. Li et al., Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett. 4(2), 317–321 (2004)

    Article  ADS  Google Scholar 

  15. J. Guo, S. Datta, M. Lundstrom, M.P. Anantram, Toward multiscale modeling of carbon nanotube transistors. Int. J. Multiscale Comput. Eng. 2(2), 257–277 (2004)

    Article  Google Scholar 

  16. S.O. Koswatta, M.S. Lundstrom, M.P. Anantram, D.E. Nikonov, Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors. Appl. Phys. Lett. 87, 253107 (2005)

    Article  ADS  Google Scholar 

  17. International Technology Roadmap for Semiconductors (ITRS) (2009), http://www.itrs.net/Links/2009ITRS/Home2009.htm

  18. J. Knoch, S. Mant, J. Appenzeller, Comparison of transport properties in carbon nanotube field-effect transistors with Schottky contacts and doped source/drain contacts. Solid-State Electron. 49, 73 (2005)

    Article  ADS  Google Scholar 

  19. J. Appenzeller, Yu-Ming Lin, J. Knoch, Z. Chen, Ph. Avouris, Comparing carbon nanotube transistors—the ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52, 2568 (2005)

    Article  ADS  Google Scholar 

  20. S.O. Koswatta, S. Hasan, M.S. Lundstrom, M.P. Anantram, D.E. Nikonov, Nonequilibrium Green’s function treatment of phonon scattering in carbon-nanotube transistors. IEEE Trans. Electron Devices 54(9), 2339–2351 (2007)

    Article  ADS  Google Scholar 

  21. K. Boucart, A.M. Ionescu, Double-gate tunnel FET with high-K gate dielectric. IEEE Trans. Electron. Dev. 54(7) (2007)

  22. H. Zhou, M. Zhang, Y. Hao, Performance optimization of MOS-like carbon nanotube-FETs based on electrostatic doping. J. Comput. Electron. 9, 87–92 (2010)

    Article  ADS  Google Scholar 

  23. J. Guo, A. Javey, H. Dai, M. Lundstrom, Performance analysis and design optimization of near ballistic carbon nanotube field-effect transistor, in IEEE Int. Meet. Electron. Dev., IEDM (2004)

    Google Scholar 

  24. Z. Chen, J. Appenzeller, J. Knoch, Yu-Ming Lin, Ph. Avouris, The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 5, 1497 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Fathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moghadam, N., Aziziyan, M.R. & Fathi, D. Design and simulation of double-lightly doped MOSCNT using non-equilibrium Green’s function. Appl. Phys. A 108, 551–557 (2012). https://doi.org/10.1007/s00339-012-6926-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6926-2

Keywords

Navigation