Skip to main content
Log in

Electrical conduction mechanism in nanocrystalline CdTe (nc-CdTe) thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present paper reports the electrical characterization of nc-CdTe thin films in different temperature ranges. Thin films of nc-CdTe are deposited on the glass substrates by Physical Vapor Deposition (PVD) using the Inert Gas Condensation (IGC) method. The Transmission Electron Microscopy (TEM) studies are made on the CdTe nanocrystals. The surface morphology and structure of the thin films are studied by the Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD) measurements. Dark conductivity measurements are made on the nc-CdTe thin films in the temperature range 110–370 K in order to identify the conduction mechanism in this temperature range. The obtained results reveal three distinct regions at high, low, and sufficiently low temperature regions with decreasing activation energies. The analysis of the high temperature conductivity data is based on the Seto’s model of thermionic emission. At very low temperatures, dc conductivity (σ d) obeys the law: lnσT 1/2T −1/4, indicating variable-range hopping in localized states near the Fermi level. The density of the localized states N(E F) and various other Mott’s parameters like the degree of disorder (T O), hopping distance (R), and hopping energy (W) near the Fermi level are calculated using dc conductivity measurements at low temperatures. Carrier type, carrier concentration, and mobility are determined from the Hall measurements. The transient photoconductivity decay measurements are performed on the nc-CdTe thin films at different intensities in order to know the nature of the decay process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.K. Tripathi, J. Mater. Sci. 45, 5468 (2010)

    Article  Google Scholar 

  2. O. Koudriavtseva, A. Morales-Acevedo, Yu. Kudriavtsev, S. Gallardo, R. Asomoza, R. Mendoza-Perez, J. Sastre-Hernandez, G. Contreras-Puente, Appl. Surf. Sci. 255, 1423 (2008)

    Article  ADS  Google Scholar 

  3. E. Matei, L. Ion, S. Antohe, R. Neumann, I. Encutescu, Nanotechnology 21, 105202 (2010)

    Article  ADS  Google Scholar 

  4. S. Ham, B. Choi, N. Myung, N.R. de Tacconi, C.R. Chenthamarakshan, K. Rajeshwar, Y. Son, J. Electroanal. Chem. 601, 77 (2007)

    Article  Google Scholar 

  5. Y.-O. Choi, N.-H. Kim, J.-S. Park, W.-S. Lee, Mater. Sci. Eng. B 171, 73 (2010)

    Article  Google Scholar 

  6. J. Aguilar-Hernández, G. Contreras-Puente, J. Vidal-Larramendi, O. Vigil-Galán, Thin Solid Films 426, 132 (2003)

    Article  ADS  Google Scholar 

  7. V.V. Ison, A. RangaRao, V. Dutta, Sol. Energy Mater. Sol. Cells 93, 1507 (2009)

    Article  Google Scholar 

  8. Y. Sato, H. Hatori, S. Igarashi, M. Arai, K. Ito, S. Kikuchi, Curr. Appl. Phys. 10, S499 (2010)

    Article  ADS  Google Scholar 

  9. A.A. Al-Ghamdi, S.A. Khan, A. Nagat, M.S. Abd El-Sadek, Opt. Laser Technol. 42, 1181 (2010)

    Article  ADS  Google Scholar 

  10. E.R. Shaaban, N. Afify, A. El-Taher, J. Alloys Compd. 482, 400 (2009)

    Article  Google Scholar 

  11. R. Raj Singh, D. Painuly, R.K. Pandey, Mater. Chem. Phys. 116, 261 (2009)

    Article  Google Scholar 

  12. S.J. Ikhmayies, R.N. Ahmad-Bitar, Physica B 405, 3141 (2010)

    Article  ADS  Google Scholar 

  13. C.E.M. Campos, K. Ersching, J.C. de Lima, T.A. Grandi, H. Höhn, P.S. Pizani, J. Alloys Compd. 466, 80 (2008)

    Article  Google Scholar 

  14. I. Ban, M. Kristl, V. Danč, A. Danč, M. Drofenik, Mater. Lett. 67, 56 (2012)

    Article  Google Scholar 

  15. V.J. Porter, T. Mentzel, S. Charpentier, M.A. Kastner, M.G. Bawendi, Phys. Rev. B 73, 155303 (2006)

    Article  ADS  Google Scholar 

  16. T.S. Mentzel, V.J. Porter, S. Geyer, K. MacLean, M.G. Bawendi, M.A. Kastner, Phys. Rev. B 77, 075316 (2008)

    Article  ADS  Google Scholar 

  17. D. Yu, C. Wang, B.L. Wehrenberg, P.G. Sionnest, Phys. Rev. Lett. 92, 216802-1 (2004)

    ADS  Google Scholar 

  18. H. Liu, A. Pourret, P.G. Sionnest, ACS Nano 4, 5211 (2010)

    Article  Google Scholar 

  19. J.Y.W. Seto, J. Electrochem. Soc. 122, 701 (1975)

    Article  Google Scholar 

  20. G.P. Kissling, D.J. Fermin, Phys. Chem. Chem. Phys. 11, 10080 (2009)

    Article  Google Scholar 

  21. F. Long, W.E. Hagston, P. Harrison, T. Stirner, J. Appl. Phys. 82, 3414 (1997)

    Article  ADS  Google Scholar 

  22. S. Lalitha, R. Sathyamoorthy, S. Senthilarasu, A. Subbarayan, Sol. Energy Mater. Sol. Cells 90, 694 (2006)

    Article  Google Scholar 

  23. A.L. Dawar, K.V. Ferdinand, C. Jagdish, P. Kumar, P.C. Mathur, J. Phys. D, Appl. Phys. 16, 2349 (1983)

    Article  ADS  Google Scholar 

  24. G. Shanmugavelayutham, V. Selvarajan, Bull. Mater. Sci. 27, 453 (2004)

    Article  Google Scholar 

  25. W.P. Wuelfing, R.W. Murray, J. Phys. Chem. B 106, 3139 (2002)

    Article  Google Scholar 

  26. Y. Yao, C. Liu, H. Qi, X. Chang, C. Wang, G. Wang, Curr. Appl. Phys. 11, 620 (2011)

    Article  ADS  Google Scholar 

  27. N.F. Mott, Philos. Mag. 19, 835 (1969)

    Article  ADS  Google Scholar 

  28. A.A. Abu-Sehly, M.I. Abd-Elrahman, J. Phys. Chem. Solids 63, 163 (2002)

    Article  ADS  Google Scholar 

  29. A. Rockett, The Materials Science of Semiconductors (Springer, New York, 2007)

    Google Scholar 

  30. M.L. Theye, in Proceedings of the Fifth International Conference on Amorphous and Liquid Semi-conductors, vol. 1, Garmisch- Partenkirchen, Germany (1973)

    Google Scholar 

  31. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1970)

    Google Scholar 

  32. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1979)

    Google Scholar 

  33. S. Ramchandar Rao, M. Nagabhooshanam, V. Hari Babu, Cryst. Res. Technol. 25, 55 (2006)

    Google Scholar 

  34. M. Thamilselvan, K. Premnazeer, D. Mangalaraj, Sa.K. Narayandass, J. Yi, Cryst. Res. Technol. 39, 137 (2004)

    Article  Google Scholar 

  35. C.H. Seager, G.E. Pike, Phys. Rev. B 10, 1435 (1974)

    Article  ADS  Google Scholar 

  36. A.F. Qasrawi, M.M. Shukri Ahmed, Cryst. Res. Technol. 41, 364 (2006)

    Article  Google Scholar 

  37. T.G. Abdel-Malik, R.M. Abdel-Latif, A. Sawaby, S.M. Ahmed, J. Appl. Sci. Res. 4, 331 (2008)

    Google Scholar 

  38. V.A. Twaddell, W.C. Lacourse, J.D. Mackenzie, J. Non-Cryst. Solids 8, 831 (1972)

    Article  ADS  Google Scholar 

  39. A.F. Qasrawi, M.M. Shukri Ahmed, Cryst. Res. Technol. 41, 364 (2006)

    Article  Google Scholar 

  40. J.M. Marshall, C. Main, J. Phys. Condens. Matter 20, 285210 (2008)

    Article  Google Scholar 

  41. N.F. Mott, E.A. Davis, Philos. Mag. 22, 903 (1970)

    Article  ADS  Google Scholar 

  42. C. Viswanathan, G.G. Rusu, D. Mangalaraj, Sa.K. Narayandass, J. Yi, J. Optoelectron. Adv. Mater. 7, 713 (2005)

    Google Scholar 

  43. G. Harbeke (ed.), Polycrystalline Semiconductors: Physical Properties and Applications (Springer, Berlin, 1985)

    Google Scholar 

  44. L.L. Kazmerski (ed.), Polycrystalline and Amorphous Thin Films and Devices (Academic Press, New York, 1980)

    Google Scholar 

  45. J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975)

    Article  ADS  Google Scholar 

  46. G. Baccarani, B. Ricco, G. Spandini, J. Appl. Phys. 49, 5565 (1978)

    Article  ADS  Google Scholar 

  47. C.H. Seager, T.G. Gastner, J. Appl. Phys. 49, 3879 (1978)

    Article  ADS  Google Scholar 

  48. M. Miyake, K. Murase, T. Hirato, Y. Awakura, J. Electrochem. Soc. 150, C413 (2003)

    Article  Google Scholar 

  49. W. Fuhs, D. Meyer, Phys. Status Solidi A 24, 275 (1974)

    Article  ADS  Google Scholar 

  50. D.P. Padiyan, A. Marikani, K.R. Murali, Mater. Chem. Phys. 78, 51 (2002)

    Article  Google Scholar 

  51. R. Sathyamoorthy, P. Sudhagar, C. Chandramohan, K.P. Vijya Kumar, Cryst. Res. Technol. 42, 498 (2007)

    Article  Google Scholar 

  52. I. Sharma, A. Kumar, S.K. Tripathi, P.B. Barman, J. Phys. D, Appl. Phys. 41, 175504 (2008)

    Article  ADS  Google Scholar 

  53. M.S. Ivou, S.D. Shutov, V.I. Arkhipov, G.I. Adriaensens, J. Non-Cryst. Solids 299, 1008 (2002)

    Article  ADS  Google Scholar 

  54. V. Vaninov, J. Orenstein, M.A. Kastner, Philos. Mag., B 45, 399 (1982)

    Article  Google Scholar 

  55. M.A. Kastner, Philos. Mag., B 37, 127 (1978)

    Article  Google Scholar 

  56. A. Thakur, V. Sharma, G.S.S. Saini, N. Goyal, S.K. Tripathi, J. Phys. D, Appl. Phys. 38, 2005 (1959)

    Google Scholar 

  57. R. Bhargava (ed.), Properties of Wide Bandgap II–VI Semiconductors (Inspection, London, 1997)

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Department of Science and Technology (Major Research Project), N. Delhi. Ms. Kriti Sharma is thankful to UGC, N. Delhi for providing the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Tripathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, K., Al-Kabbi, A.S., Saini, G.S.S. et al. Electrical conduction mechanism in nanocrystalline CdTe (nc-CdTe) thin films. Appl. Phys. A 108, 911–920 (2012). https://doi.org/10.1007/s00339-012-6993-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6993-4

Keywords

Navigation