Skip to main content
Log in

Analysis of strained double-lightly doped MOSCNT using NEGF

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effects of uniaxial and torsional strains on the double-lightly doped MOSCNT (DLD-MOSCNT) performances are investigated, using the non-equilibrium Green function (NEGF) formalism in mode space approach. The Hamiltonian of the device is obtained by a tight-binding approximation assuming that only p z orbitals are contributing in carrier transport. In all simulation processes, one mode with the lowest subband is considered. DLD-MOSCNT has a small band-to-band tunneling and almost eliminates the ambipolar behavior of I DSV GS characteristics because of the band engineering. We use a modified model to demonstrate the strain effects on such a low OFF-current device. The results show that the strain effects mainly depend on the chiral vector and diameter of CNT. The strain causes band gap and carrier velocity changes, which result in variation of ON- or OFF-current. In addition, the subthreshold swing of this device under uniaxial strain is calculated, which is about 61 mV/Dec for 2 % tensile strain in (16,0) and for −2 % compressive strain in (17,0). Under the uniaxial strain, in the case that the energy band gap increases, the variation of DIBL is very small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.J. Tans et al., Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–477 (1997)

    Article  ADS  Google Scholar 

  2. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, P. Avouris, Single- and multi wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998)

    Article  ADS  Google Scholar 

  3. H.W.C. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker, Carbon nanotube single-electron transistors at room temperature. Science 293, 76–79 (2001)

    Article  ADS  Google Scholar 

  4. H. Maune, M. Bockrath, Elastomeric carbon nanotube circuits for local strain sensing. Appl. Phys. Lett. 89(17), 173131 (2006)

    Article  ADS  Google Scholar 

  5. F. Khademolhosseini, R.K.N.D. Rajapakse, A. Nojeh, Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models. Comput. Mater. Sci. 48, 736–742 (2010)

    Article  Google Scholar 

  6. S. Paulson et al., In situ resistance measurements of strained carbon nanotubes. Appl. Phys. Lett. 75(19), 2936–2938 (1999)

    Article  ADS  Google Scholar 

  7. T.W. Tombler et al., Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405(6788), 769–772 (2000)

    Article  ADS  Google Scholar 

  8. E.D. Minot, Y. Yaish, V. Sazonova, J. Park, M. Brink, P.L. McEuen, Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90(15), 156401 (2003)

    Article  ADS  Google Scholar 

  9. J. Cao, Q. Wang, H. Dai, Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Phys. Rev. Lett. 90(15), 157601 (2003)

    Article  ADS  Google Scholar 

  10. J.W. Ding, X.H. Yan, J.X. Cao, D.L. Wang, Y. Tang, Q.B. Yang, Curvature and strain effects on electronic properties of single-wall carbon nanotubes. J. Phys. Condens. Matter 15, 439–445 (2003)

    Article  ADS  Google Scholar 

  11. C. Wei, K. Cho, D. Srivastava, Tensile strength of carbon nanotubes under realistic temperature and strain rate. Phys. Rev. B, Condens. Matter 67(11), 115407 (2003)

    Article  ADS  Google Scholar 

  12. B.I. Yakobson, C.J. Brabec, J. Bernholc, Nanomechanics of carbontubes: instabilities beyond linear response. Phys. Rev. Lett. 76(14), 2511–2514 (1996)

    Article  ADS  Google Scholar 

  13. Y. Yoon, J. Guo, Analysis of strain effects in ballistic carbon nanotube FETs. IEEE Trans. Electron Devices 54(6), 1280–1287 (2007)

    Article  ADS  Google Scholar 

  14. I. Hassani nia, M.H. Sheikhi, Effect of strain on the performance of MOSFET-like and p–i–n carbon nanotube FETs. Solid-State Electron. 53, 497–503 (2009)

    Article  ADS  Google Scholar 

  15. J. Guo, Carbon nanotube electronics: modeling, physics and applications, Ph.D. Thesis, the Purdue University, USA (2004)

  16. S.O. Koswatta, S. Hasan, M.S. Lundstrom, M.P. Anantram, D.E. Nikonov, Nonequilibrium Green’s function treatment of phonon scattering in carbon-nanotube transistors. IEEE Trans. Electron Devices 54(9), 2339–2351 (2007)

    Article  ADS  Google Scholar 

  17. N. Moghadam, M.R. Aziziyan, D. Fathi, Design and simulation of double-lightly doped MOSCNT using non-equilibrium Green’s function. Appl. Phys. A (2012). doi:10.1007/s00339-012-6926-2

    Google Scholar 

  18. S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2005)

    Book  MATH  Google Scholar 

  19. Z. Ren, Nanoscale MOSFETs: physics, simulation, and design. Ph.D. Thesis, the Purdue University, USA (2001)

  20. W.A. Harrison, Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Freeman, San Francisco, 1990)

    Google Scholar 

  21. D. Fathi, B. Forouzandeh, R. Sarvari, A new method for the analysis of transmission property in carbon nanotubes using Green’s function. Appl. Phys. A 102, 231–238 (2011)

    Article  ADS  Google Scholar 

  22. ITRS, http://www.itrs.net/Links/2009ITRS/Home2009.htm (2009)

  23. K. Boucart, A.M. Ionescu, Double-gate tunnel FET with high-K gate dielectric. IEEE Trans. Electron Dev. 54(7) (2007)

  24. M. Lundstrom, J. Guo, Nanoscale Transistors: Device Physics, Modeling and Simulation (Springer, Berlin, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Fathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aziziyan, M.R., Moghadam, N., Fathi, D. et al. Analysis of strained double-lightly doped MOSCNT using NEGF. Appl. Phys. A 109, 481–488 (2012). https://doi.org/10.1007/s00339-012-7059-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7059-3

Keywords

Navigation