Skip to main content
Log in

Structural inhomogeneity and piezoelectric enhancement in ZnO nanobelts

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, piezoelectricity of individual ZnO nanobelts grown along the [0 1 ī 0] direction is studied using piezoresponse force microscopy (PFM). It is found that the effective piezoelectric coefficient of these NBs, \(d_{33}^{\mathrm{eff}}\), is increasing from 2.7 pm/V at 30 kHz to 44 pm/V at 150 kHz. The results were explained by the Debye model, where structural inhomogeneity in our NBs was shown to be responsible for piezoelectric enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Dal Corso, M. Posternak, R. Resta, A. Baldereschi, Phys. Rev. B, Condens. Matter Mater. Phys. 50, 10715 (1994)

    Article  ADS  Google Scholar 

  2. E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, Z.L. Wang, Appl. Phys. Lett. 81, 1869 (2002)

    Article  ADS  Google Scholar 

  3. T. Shibata, K. Unno, E. Makino, Y. Ito, S. Shimada, Sens. Actuators A, Phys. 102, 106 (2002)

    Article  Google Scholar 

  4. Z.L. Wang, J. Song, Science 312, 242 (2006)

    Article  ADS  Google Scholar 

  5. A.L. Kholkin, C. Wutchrich, D.V. Taylor, N. Setter, Rev. Sci. Instrum. 67, 1935 (1996)

    Article  ADS  Google Scholar 

  6. R. Winters, M. Reinermann, C. Enss, G. Weiss, S. Hunklinger, Measurement of the piezoelectricity of films with scanning tunneling microscopy. Conf. Proc. 13, 1316 (1995)

    Google Scholar 

  7. A.G. Agronin, Y. Rosenwaks, G.I. Rosenman, Nano Lett. 3, 169 (2003)

    Article  ADS  Google Scholar 

  8. J.A. Christman, J.R.R. Woolcott, A.I. Kingon, R.J. Nemanich, Appl. Phys. Lett. 73, 3851 (1998)

    Article  ADS  Google Scholar 

  9. C. Harnagea, A. Pignolet, M. Alexe, D. Hesse, U. Gösele, Appl. Phys. A, Mater. Sci. Process. 70, 261 (2000)

    Article  ADS  Google Scholar 

  10. V.V. Shvartsman, A.L. Kholkin, N.A. Pertsev, Appl. Phys. Lett. 81, 3025 (2002)

    Article  ADS  Google Scholar 

  11. A. Kholkin, I. Bdikin, D. Kiselev, V. Shvartsman, S.H. Kim, J. Electroceram. 19, 83 (2007)

    Article  Google Scholar 

  12. D.A. Scrymgeour, T.L. Sounart, N.C. Simmons, J.W.P. Hsu, J. Appl. Phys. 101, 014316 (2007)

    Article  ADS  Google Scholar 

  13. M.-H. Zhao, Z.-L. Wang, S.X. Mao, Nano Lett. 4, 587 (2004)

    Article  ADS  Google Scholar 

  14. A. Kholkin, Ferroelectrics 221, 219 (1999)

    Article  Google Scholar 

  15. L. Schuler, N. Valanoor, P. Miller, I. Guy, R. Reeves, M. Alkaisi, J. Electron. Mater. 36, 507 (2007)

    Article  ADS  Google Scholar 

  16. S.L. Mensah, V.K. Kayastha, Y.K. Yap, J. Phys. Chem. C 111, 16092 (2007)

    Article  Google Scholar 

  17. A. Asthana, K. Momeni, A. Prasad, Y.K. Yap, R.S. Yassar, Appl. Phys. Lett. 95, 172106 (2009)

    Article  ADS  Google Scholar 

  18. Review of Ferroelectric Domain Imaging by Piezoresponse Force Microscopy

  19. S.V. Kalinin, D.A. Bonnell, Phys. Rev. B, Condens. Matter Mater. Phys. 65, 125408 (2002)

    Article  ADS  Google Scholar 

  20. M. Alexe, A. Gruverman, Nanoscale Characterisation of Ferroelectric Materials: Scanning Probe Microscopy Approach (Springer, Berlin, 2004)

    Google Scholar 

  21. T. Jungk, A. Hoffmann, E. Soergel, Appl. Phys. Lett. 89, 163507 (2006)

    Article  ADS  Google Scholar 

  22. M. Jazbinšek, M. Zgonik, Appl. Phys. B, Lasers Opt. 74, 407 (2002)

    Article  ADS  Google Scholar 

  23. D. Damjanovic, M.D. Maeder, P.D. Martin, C. Voisard, N. Setter, J. Appl. Phys. 90, 5708 (2001)

    Article  ADS  Google Scholar 

  24. J.-F. Li, P. Moses, D. Viehland, Rev. Sci. Instrum. 66, 215 (1995)

    Article  ADS  Google Scholar 

  25. F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. B, Condens. Matter Mater. Phys. 56, R10024 (1997)

    Article  ADS  Google Scholar 

  26. G. Bertotti, I.D. Mayergoyz, The Science of Hysteresis (Elsevier, Amsterdam, 2006)

    Google Scholar 

  27. P.J.W. Debye, The Collected Papers of Peter J.W. Debye (Interscience, New York, 1954)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank NSF-CMMI Grant no. 0926819 and NSF-DMR Grant no. 0820884 for providing the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Shahbazian-Yassar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Momeni, K., Asthana, A., Prasad, A. et al. Structural inhomogeneity and piezoelectric enhancement in ZnO nanobelts. Appl. Phys. A 109, 95–100 (2012). https://doi.org/10.1007/s00339-012-7081-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7081-5

Keywords

Navigation