Skip to main content
Log in

Dielectric relaxor behaviors and tunability of (1−x)Ba(Zr0.2Ti0.8)O3x(Ba0.7Ca0.3)TiO3 thin films fabricated by sol–gel method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Temperature dependence of dielectric properties of (1−x)Ba(Zr0.2Ti0.8)O3x(Ba0.7Ca0.3)TiO3 (x=0.15, 0.30, and 0.50) (BZT–xBCT) thin films prepared by a sol–gel method has been investigated. The results show that there is a broad dielectric maximum near T m and the diffuse parameter γ is close to 2, indicating a nearly complete diffuse phase transition in BZT–xBCT thin films. The dielectric relaxor behaviors of the thin films well follow Vogel–Fulcher relation. The thin films show a high dielectric tunability up to 65 %, with a small variation in the temperature range from 248.15 to 373.15 K. This study indicates that the thin films, especially for x=0.50, are promising candidates for tunable device applications with good temperature stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Nath, D. Ghosh, J. Maria, A.I. Kingon, W. Fathelbab, P.D. Franzon, M.B. Steer, IEEE Trans. Microw. Theory Tech. 53, 2707 (2005)

    Article  ADS  Google Scholar 

  2. N. Setter, R. Waser, Acta Mater. 48, 151 (2000)

    Article  Google Scholar 

  3. A.K. Tagantsev, V.O. Sherman, K.F. Astafiev, J. Venkatesh, N. Setter, J. Electroceram. 11, 5 (2003)

    Article  Google Scholar 

  4. N.Y. Chan, Y. Wang, H.L.W. Chan, Ferroelectrics 419, 33 (2011)

    Article  Google Scholar 

  5. P. Bao, T.J. Jackson, X. Wang, M.J. Lancaster, J. Phys. D, Appl. Phys. 41, 063001 (2008)

    Article  ADS  Google Scholar 

  6. M.W. Cole, E. Ngo, S. Hirsch, J.D. Demaree, S. Zhong, S.P. Alpay, J. Appl. Phys. 102, 034104 (2007)

    Article  ADS  Google Scholar 

  7. E.A. Fardin, A.S. Holland, K. Ghorbani, P. Reichart, Appl. Phys. Lett. 89, 022901 (2006)

    Article  ADS  Google Scholar 

  8. K.B. Chong, L. Chen, L. Yan, C.Y. Tan, T. Yang, C.K. Ong, T. Osipowicz, J. Appl. Phys. 95, 1416 (2004)

    Article  ADS  Google Scholar 

  9. C.M. Carlson, T.V. Rivkin, P.A. Parilla, J.D. Perkins, D.S. Ginley, A.B. Kozyrev, V.N. Oshadchy, A.S. Pavlov, Appl. Phys. Lett. 76, 1920 (2000)

    Article  ADS  Google Scholar 

  10. M. Jain, S.B. Majumder, R.S. Katiyar, F.A. Miranda, F.W.V. Keuls, Appl. Phys. Lett. 82, 1911 (2003)

    Article  ADS  Google Scholar 

  11. Z.G. Ban, S.P. Alpay, J.V. Mantese, Integr. Ferroelectr. 58, 1281 (2003)

    Article  Google Scholar 

  12. Z.G. Ban, S.P. Alpay, J.V. Mantese, Phys. Rev. B 67, 184104 (2003)

    Article  ADS  Google Scholar 

  13. M.W. Cole, E. Ngo, S. Hirsch, M.B. Okatan, S.P. Alpay, Appl. Phys. Lett. 92, 072906 (2008)

    Article  ADS  Google Scholar 

  14. M.W. Cole, C. Hubbard, E. Ngo, M. Ervin, M. Wood, R.G. Geyer, J. Appl. Phys. 92, 475 (2002)

    Article  ADS  Google Scholar 

  15. Z. Yuan, Y. Lin, J. Weaver, X. Chen, C.L. Chen, J.C. Jiang, E.I. Meletis, Appl. Phys. Lett. 87, 152901 (2005)

    Article  ADS  Google Scholar 

  16. S.Y. Wang, B.L. Cheng, C. Wang, S.Y. Dai, H.B. Lu, Y.L. Zhou, Z.H. Chen, G.Z. Yang, Appl. Phys. Lett. 84, 4116 (2004)

    Article  ADS  Google Scholar 

  17. V.S. Puli, A. Kumar, D.B. Chrisey, M. Tomozawa, J.F. Scott, R.S. Katiyar, J. Phys. D, Appl. Phys. 44, 395403 (2011)

    Article  Google Scholar 

  18. X.G. Tang, K.H. Chew, J. Wang, H.L.W. Chan, Appl. Phys. Lett. 85, 991 (2004)

    Article  ADS  Google Scholar 

  19. X.G. Tang, H.L.W. Chan, J. Appl. Phys. 97, 034109 (2005)

    Article  ADS  Google Scholar 

  20. L.L. Jiang, X.G. Tang, Q. Li, H.L.W. Chan, Vacuum 83, 1018 (2009)

    Article  Google Scholar 

  21. T.S. Kalkur, W.C. Yi, E. Philofsky, L. Kammerdiner, Mater. Lett. 57, 4147 (2003)

    Article  Google Scholar 

  22. W.C. Yi, T.S. Kalkur, E. Philofsky, L. Kammerdiner, Appl. Phys. Lett. 78, 3517 (2001)

    Article  ADS  Google Scholar 

  23. W.F. Liu, X.B. Ren, Phys. Rev. Lett. 103, 257602 (2009)

    Article  ADS  Google Scholar 

  24. A. Piorra, A. Petraru, H. Kohlstedt, M. Wuttig, E. Quandt, J. Appl. Phys. 109, 104101 (2011)

    Article  ADS  Google Scholar 

  25. G.Q. Kang, K. Yao, J. Wang, J. Am. Ceram. Soc. 95, 986 (2012)

    Google Scholar 

  26. Y.T. Lin, G.H. Wu, N. Qin, D.H. Bao, Thin Solid Films 520, 2800 (2012)

    Article  ADS  Google Scholar 

  27. L.E. Cross, Ferroelectrics 151, 305 (1994)

    Article  Google Scholar 

  28. D. Viehland, M. Wuttig, L.E. Cross, Ferroelectrics 120, 71 (1991)

    Article  Google Scholar 

  29. S. Mahajan, O.P. Thakur, D.K. Bhattacharya, K. Sreenivas, J. Phys. D, Appl. Phys. 42, 065413 (2009)

    Article  ADS  Google Scholar 

  30. Y.Y. Wu, X.H. Wang, C.F. Zhong, L.T. Li, J. Am. Ceram. Soc. 94, 1843 (2011)

    Article  Google Scholar 

  31. X.G. Tang, K.H. Chew, H.L.W. Chan, Acta Mater. 52, 5177 (2004)

    Article  Google Scholar 

  32. Y. Somiya, A.S. Bhalla, L.E. Cross, Int. J. Inorg. Mater. 3, 709 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from NSFC (Grant Nos. 50872156 and 51172289) and China Postdoctoral Science Foundation (Grant No. 20110490970).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinghua Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Qin, N., Wu, G. et al. Dielectric relaxor behaviors and tunability of (1−x)Ba(Zr0.2Ti0.8)O3x(Ba0.7Ca0.3)TiO3 thin films fabricated by sol–gel method. Appl. Phys. A 109, 743–749 (2012). https://doi.org/10.1007/s00339-012-7110-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7110-4

Keywords

Navigation