Skip to main content
Log in

Anomalous magnetic behavior of La0.6Sr0.4MnO3 nano-tubes constituted with 3–12 nm particles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Uniform La0.6Sr0.4MnO3 (LSMO) nanotubes of an average diameter 180 nm were synthesized by a modified sol–gel method employing nanochannel porous anodic alumina templates. The nanotubes were characterized chemically and structurally by XRD, SEM, EDX, and TEM. Postannealed (700 °C for 1 h hour) nanotubes were found to be polycrystalline from XRD and SAED studies. To get further insight into the nanotube structure, HRTEM studies were done, which revealed that obtained LSMO nanotubes were structurally constituted with nanoparticles of 3–12 nm size. These constituent nanoparticles were randomly aligned and self-knitted to build the nanotube wall. Investigation of magnetic properties at this structured nanoscale revealed remarkable irreversibility between the zero field cooling (ZFC) and field cooling (FC) magnetization curves accompanied with a peak in the ZFC curve indicating spin-glass-like behavior. Structural defects and compositional variations at surfaces and grain-boundaries of constituent nanoparticles might be responsible for this anomalous magnetic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435 (1999)

    Article  Google Scholar 

  3. G.R. Patzke, F. Krumeich, R. Nesper, Based on oxide nanotubes and nanorods—anisotropic building blocks for future nanotechnology. Angew. Chem. 114, 2554 (2002)

    Article  Google Scholar 

  4. J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. Choi, P. Yang, Single-crystal gallium nitride nanotubes. Nature 422, 599 (2003)

    Article  ADS  Google Scholar 

  5. J. Sha, J. Niu, X. Ma, J. Xu, X. Zhang, Q. Yang, D. Yang, Silicon nanotubes. Adv. Mater. 14, 1219 (2002)

    Article  Google Scholar 

  6. S. Jim, T.H. Tiefel, M. McCormack, R.A. Fastnascht, R. Ramesh, L.H. Chen, Thousandfold change in resistivity in magnetoresistive La–Ca–Mn–O films. Science 264, 413 (1994)

    Article  ADS  Google Scholar 

  7. A.J. Millis, Lattice effects in magnetoresistive manganese perovskites. Nature 392, 147 (1998)

    Article  ADS  Google Scholar 

  8. A.B. Shick, First-principles calculation of uniaxial magnetic anisotropy and magnetostriction in strained colossal magnetoresistance films. Phys. Rev. B 60, 6254 (1999)

    Article  ADS  Google Scholar 

  9. M. Jaime, P. Lin, M.B. Salamon, P.D. Han, Low-temperature electrical transport and double exchange in La0.67(Pb, Ca)0.33MnO3. Phys. Rev. B 58, R5901 (1998)

    Article  ADS  Google Scholar 

  10. C.N.R. Rao, B. Raveau (eds.), Colossal Magnetoresistance, Charge Ordering and Related Properties (World Scientific, Singapore, 1998)

    Google Scholar 

  11. S. Singh, S.B. Krupanidhi, Surface spin glass behavior in sol–gel derived La0.7Ca0.3MnO3 nanotubes. Dalton Trans. 4708–4710 (2008)

  12. S.S. Rao, S. Tripathi, D. Pandey, S.V. Bhat, Suppression of charge order, disappearance of antiferromagnetism, and emergence of ferromagnetism in Nd0.5Ca0.5MnO3 nanoparticles. Phys. Rev. B 74, 144416 (2006)

    Article  ADS  Google Scholar 

  13. S.S. Rao, K.N. Anuradha, S. Sarangi, S.V. Bhat, Weakening of charge order and antiferromagnetic to ferromagnetic switch over in Pr0.5Ca0.5MnO3 nanowires. Appl. Phys. Lett. 87, 182503 (2005)

    Article  ADS  Google Scholar 

  14. A. Biswas, I. Das, Experimental observation of charge ordering in nanocrystalline Pr0.65Ca0.35MnO3. Phys. Rev. B 74, 172405 (2006)

    Article  ADS  Google Scholar 

  15. Z. Zhong, D. Wang, Y. Cui, M.W. Bockrath, C.M. Lieber, Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 302, 1377 (2003)

    Article  ADS  Google Scholar 

  16. A. Halder, N. Ravishankar, Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv. Mater. 19, 1854–1858 (2007)

    Article  Google Scholar 

  17. L. Hueso, N.D. Mathur, Nanotechnology: dreams of a hollow future. Nature 427, 303 (2004)

    Article  ADS  Google Scholar 

  18. C.R. Martin, Nanomaterials: a membrane-based synthetic approach. Science 266, 1961 (1994)

    Article  ADS  Google Scholar 

  19. H.Y. Hwang, S.-W. Cheong, N.P. Ong, B. Batlogg, Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3. Phys. Rev. Lett. 77, 2041–2044 (1996)

    Article  ADS  Google Scholar 

  20. N.D. Mathur, G. Bumell, S.P. Isaac, T.J. Jackson, B.-S. Teo, J.S. MacManus-Driscoll, L.F. Cohen, J.E. Evetts, M.G. Blamire, Large low-field magnetoresistance in La0.7Ca0.3MnO3 induced by artificially grain boundaries. Nature (London) 387, 266 (1997)

    Article  ADS  Google Scholar 

  21. Y. Tokura, Features of cmr manganites, in Colossal Magnetoresistive Oxides, ed. by Y. Tokura (Gordon and Breach, New York, 2000), pp. 1–52

    Google Scholar 

  22. J. O’Donnell, A. Andrus, S. Oh, E. Colla, J. Eckstein, Colossal magnetoresistance magnetic tunnel junctions grown by molecular-beam epitaxy. Appl. Phys. Lett. 76, 1914–1916 (2000)

    Article  ADS  Google Scholar 

  23. J. Sun, W. Gallagher, P. Duncombe, L. KrusinElbaum, R. Altman, A. Gupta, Y. Lu, G. Gong, G. Xiao, Observation of large low-field magnetoresistance in trilayer perpendicular transport devices made using doped manganite perovskites. Appl. Phys. Lett. 69, 3266–3268 (1996)

    Article  ADS  Google Scholar 

  24. M. Bowen, M. Bibes, A. Barthelemy, J. Contour, A. Anane, Y. Lemaitre, A. Fert, Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments. Appl. Phys. Lett. 82, 233–235 (2003)

    Article  ADS  Google Scholar 

  25. S. Singh, S.B. Krupanidhi, Synthesis and structural characterization of Ba0.6Sr0.4TiO3 nanotubes. Phys. Lett. A 367, 356 (2007)

    Article  ADS  Google Scholar 

  26. X.Y. Zhang, C.W. Lai, X. Zhao, D.Y. Wang, J.Y. Dai, Synthesis and ferroelectric properties of multiferroic BiFeO3 nanotube arrays. Appl. Phys. Lett. 87, 143102 (2005)

    Article  ADS  Google Scholar 

  27. S. Singh, N. Kumari, K.B.R. Varma, S.B. Krupanidhi, Synthesis, structural characterization and formation mechanism of ferroelectric bismuth vanadate nanotubes. J. Nanosci. Nanotechnol. 9, 1–5 (2009)

    Article  Google Scholar 

  28. C.L. Lu, S. Dong, K.F. Wang, F. Gao, P.L. Li, L.Y. Lv, J.-M. Liu, Charge-order breaking and ferromagnetism in La0.4Ca0.6MnO3 nanoparticles. Appl. Phys. Lett. 91, 032502 (2007)

    Article  ADS  Google Scholar 

  29. K.F. Wang, Y. Wang, L.F. Wang, S. Dong, D. Li, Z.D. Zhang, H. Yu, Q.C. Li, J.M. Liu, Cluster-glass state in manganites induced by A-site cation-size disorder. Phys. Rev. B 73, 134411 (2006)

    Article  ADS  Google Scholar 

  30. T. Ji, J. Fang, V. Golob, J. Tang, C.J. O’Connor, Preparation and magnetic properties of La0.9Ca0.1MnO3 nanoparticles at 300 °C. J. Appl. Phys. 92, 6833 (2002)

    Article  ADS  Google Scholar 

  31. O. Pana, R. Turcu, M.L. Soran, S. Macavei, C. Leostean, Synthesis and characterization of LSMO nanoparticles covered with Au having a core-shell structure. J. Phys. Conf. Ser. 182, 012071 (2009)

    Article  ADS  Google Scholar 

  32. R.H. Kodama, A.E. Berkowitz, E.J. McNiff Jr., S. Foner, Surface spin disorder in NiFe2O4 nano-particles. Phys. Rev. Lett. 77, 394 (1996)

    Article  ADS  Google Scholar 

  33. J. Curiale, R.D. Sánchez, H.E. Troiani, A.G. Leyva, P. Levy, Magnetic interactions in ferromagnetic manganite nanotubes of different diameters. Appl. Surf. Sci. 254, 368 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nirupam Banerjee or S. B. Krupanidhi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, N., Krupanidhi, S.B. Anomalous magnetic behavior of La0.6Sr0.4MnO3 nano-tubes constituted with 3–12 nm particles. Appl. Phys. A 111, 605–612 (2013). https://doi.org/10.1007/s00339-012-7272-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7272-0

Keywords

Navigation