Skip to main content
Log in

Electron-beam deposition of vanadium dioxide thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Developing a reliable and efficient fabrication method for phase-transition thin-film technology is critical for electronic and photonic applications. We demonstrate a novel method for fabricating polycrystalline, switchable vanadium dioxide thin films on glass and silicon substrates and show that the optical switching contrast is not strongly affected by post-processing annealing times. The method relies on electron-beam evaporation of a nominally stoichiometric powder, followed by fast annealing. As a result of the short annealing procedure we demonstrate that films deposited on silicon substrates appear to be smoother, in comparison to pulsed laser deposition and sputtering. However, optical performance of e-beam evaporated film on silicon is affected by annealing time, in contrast to glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Morin, Phys. Rev. Lett. 3, 34–36 (1959)

    Article  ADS  Google Scholar 

  2. Z. Yang, C. Ko, S. Ramanathan, Annu. Rev. Mater. Res. 41, 337–367 (2011)

    Article  ADS  Google Scholar 

  3. A. Pashkin, C. Kubler, E. Ehrke, R. Lopez, A. Halabica, R.F. Haglund Jr., R. Hüber, A. Leitenstorfer, Phys. Rev. B 83, 195120 (2011)

    Article  ADS  Google Scholar 

  4. M.M. Qazilbash, A. Tripathi, A.A. Schafgans, B.J. Kim, H.T. Kim, Z. Cai, M.V. Holt, J.M. Maser, F. Keilmann, O.G. Shpyrko, D.N. Basov, Phys. Rev. B 83, 165108 (2011)

    Article  ADS  Google Scholar 

  5. M. Hada, K. Okimura, J. Matsuo, Phys. Rev. B 82, 153401 (2010)

    Article  ADS  Google Scholar 

  6. G. Anderson, Acta Chem. Scand. 10, 623–627 (1956)

    Article  Google Scholar 

  7. S. Westman, Acta Chem. Scand. 15, 217–221 (1961)

    Article  Google Scholar 

  8. R.R. Roach, I. Balberg, Solid State Commun. 9, 551–555 (1971)

    Article  ADS  Google Scholar 

  9. C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, R.F. Haglund Jr., A. Leitenstorfer, Phys. Rev. Lett. 99, 116401 (2007)

    Article  ADS  Google Scholar 

  10. A. Cavalleri, Cs. Toth, C.W. Siders, J.A. Squier, Phys. Rev. Lett. 87, 237401 (2001)

    Article  ADS  Google Scholar 

  11. H.T. Kim, B.G. Chae, D.H. Youn, G. Kim, K.Y. Kang, S.J. Lee, K. Kim, Y.S. Lim, Appl. Phys. Lett. 86, 242101 (2005)

    Article  ADS  Google Scholar 

  12. A. Klausch, H. Althues, T. Freudenberg, C.G. Granqvist, Thin Solid Films 10, 3823–3828 (2012)

    Google Scholar 

  13. K. Appavoo, R.F. Haglund, Nano Lett. 11, 1025–1031 (2011)

    Article  ADS  Google Scholar 

  14. H.T. Kim, Y.W. Lee, B.J. Kim, B.G. Chae, S.J. Yun, Phys. Rev. Lett. 97, 266401 (2006)

    Article  ADS  Google Scholar 

  15. A. Cavalleri, T. Dekorsy, H.H.W. Chong, J.C. Kieffer, R.W. Schoenlein, Phys. Rev. B 70, 161102 (2004)

    Article  ADS  Google Scholar 

  16. E.N. Fuls, D.H. Hensler, A.R. Ross, Appl. Phys. Lett. 10, 199–205 (1967)

    Article  ADS  Google Scholar 

  17. M. Borek, F. Qlan, V. Nagabushnam, R.K. Singh, Appl. Phys. Lett. 63, 24–29 (1993)

    Article  Google Scholar 

  18. B.G. Chae, H.T. Kim, S.J. Yun, B.J. Kim, Y.W. Lee, D.H. Youn, K.Y. Kang, Solid State Lett. 9, C12–C14 (2006)

    Article  Google Scholar 

  19. S. Koide, H. Takei, J. Phys. Soc. Jpn. 22, 946–947 (1967)

    Article  ADS  Google Scholar 

  20. U. Qureshi, T.D. Manning, I.P. Parkin, J. Mater. Chem. 14, 1190–1194 (2004)

    Article  Google Scholar 

  21. Y. Gao, S. Wang, H. Luo, L. Dai, C. Cao, Y. Liu, Z. Chen, M. Kanehira, Energy Environ. Sci. 5, 6104–6110 (2012)

    Article  Google Scholar 

  22. Z. Zhang, Y. Gao, H. Luo, L. Kang, J. Du, M. Kanehira, Y. Zhang, Z.L. Wang, Energy Environ. Sci. 4, 4290 (2011)

    Article  Google Scholar 

  23. Y. Gao, S. Wang, L. Kang, Z. Chen, J. Du, X. Liu, H. Luo, M. Kanehire, Energy Environ. Sci. 5, 8234–8237 (2012)

    Article  Google Scholar 

  24. Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, C. Cao, Nano Energy 1, 221–246 (2012)

    Article  Google Scholar 

  25. Y. Gao, C. Cao, L. Dai, H. Luo, M. Kanehira, Y. Ding, Z.L. Wang, Energy Environ. Sci. 5, 8708–8715 (2012)

    Article  Google Scholar 

  26. K. Nagashima, T. Yanagida, H. Tanaka, T. Kawai, J. Appl. Phys. 100(6), 063714 (2006)

    Article  ADS  Google Scholar 

  27. Z.P. Wu, P.A. Fang, J. Inorg. Mater. 14(5), 823–827 (1999)

    Google Scholar 

  28. A. Gupta, R. Aggarwal, P. Gupta, T. Dutte, R.J. Narayan, J. Narayan, Appl. Phys. Lett. 95, 111915 (2009)

    Article  ADS  Google Scholar 

  29. J.Y. Suh, R. Lopez, L.C. Feldman, R.F. Haglund Jr., J. Appl. Phys. 96, 1209–1213 (2004)

    Article  ADS  Google Scholar 

  30. G.A. Nyberg, R.A. Buhrman, J. Vac. Sci. Technol. A 2, 301–302 (1984)

    Article  ADS  Google Scholar 

  31. M.H. Lee, M.G. Kim, Thin Solid Films 286, 219–222 (1996)

    Article  ADS  Google Scholar 

  32. A. Subrahmanyam, Y. Bharat Kumar Reddy, C.L. Negendra, J. Phys. D, Appl. Phys. 41, 195108 (2008)

    Article  ADS  Google Scholar 

  33. J. Leroy, A. Bessaudou, F. Cosset, A. Crunteanu, Thin Solid Films 520, 4823–4825 (2012)

    Article  Google Scholar 

  34. J.M. Gregg, R.M. Bowman, Appl. Phys. Lett. 71, 3649–3651 (1997)

    Article  ADS  Google Scholar 

  35. S. Lysenko, V. Vikhnim, F. Fernandez, A. Rua, H. Liu, Phys. Rev. B 75, 075109 (2007)

    Article  ADS  Google Scholar 

  36. E. Chain, Appl. Opt. 30, 2782–2787 (1991)

    Article  ADS  Google Scholar 

  37. K. Appavoo, D.Y. Lei, Y. Sonnefraud, B. Wang, S.T. Pantelides, S.A. Maier, R.F. Haglund Jr., Nanoletters 12, 780–786 (2012)

    Article  ADS  Google Scholar 

  38. H.W. Verleur, A.S. Barker, C.N. Berglund, Phys. Rev. 172, 788–798 (1968)

    Article  ADS  Google Scholar 

  39. G. Nihoul, C.H. Leroux, V. Madigou, J. Durak, Solid State Ion. 117, 105–112 (1999)

    Article  Google Scholar 

  40. M. Gurvitch, S. Luryi, A. Polyakov, A. Shabalov, M. Dudley, G. Wang, S. Ge, V. Yakovlev, J. Appl. Phys. 102, 033504 (2007)

    Article  ADS  Google Scholar 

  41. K. Okimura, N. Kubo, Thin Solid Films 515, 4992–4995 (2007)

    Article  ADS  Google Scholar 

  42. J.D. Ryckman, V. Diez-Blanco, J. Nag, R.E. Marvel, B.K. Choi, R.F. Haglund Jr., S.M. Weiss, Opt. Express 20(12), 13215 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

K.A. was supported by a research assistantship provided by the Defense Threat Reduction Agency (HDTRA1-10-1-0016). R.E.M. was supported by the Office of Science, U.S. Department of Energy (DE-FG02-01ER45916). Portions of this work were performed at the Vanderbilt Institute of Nanoscale Science and Engineering, using facilities renovated under NSF ARI-R2 DMR-0963361. We thank Professors Jim Wittig and Charles Lukehart for their helpful discussions related to the analysis of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Marvel.

Additional information

R.E. Marvel and K. Appavoo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marvel, R.E., Appavoo, K., Choi, B.K. et al. Electron-beam deposition of vanadium dioxide thin films. Appl. Phys. A 111, 975–981 (2013). https://doi.org/10.1007/s00339-012-7324-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7324-5

Keywords

Navigation