Skip to main content
Log in

Effect of electropulsing treatment on the microstructure and superelasticity of TiNi alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Cold-rolled TiNi alloy was treated by electropulsing with different process parameters. The superelasticity, electrical resistivity and microstructure evolution of the TiNi alloy were investigated. The recrystallization is found to happen in the cold-rolled TiNi alloys during electropulsing treatment (EPT) processing and it took 9 s to complete the crystallization in the EPT process. In addition, the grain size increases with the charge voltage and the discharge frequency of the electropulse. The maximum superelasticity of 6.94 % is gained when the TiNi alloy is treated by the electropulsing with the frequency of 300 Hz. The short recrystallization time of the alloy is attributed to the acceleration of atomic diffusion and the movement velocity of the grain boundary by electropulsing. This research provides an in-depth understanding of how the electropulsing affects the microstructure and superelasticity of TiNi alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Otsuka, X. Ren, Intermetallics 7, 511 (1999)

    Article  Google Scholar 

  2. Z. Li, X. Cheng, Q. ShangGuan, Mater. Lett. 59, 705 (2005)

    Article  Google Scholar 

  3. X. Huang, Y. Liu, Scr. Mater. 45, 153 (2001)

    Article  Google Scholar 

  4. A. Sergueeva, C. Song, R. Valiev, A. Mukherjee, Mater. Sci. Eng. A 339, 159 (2003)

    Article  Google Scholar 

  5. Y. Wang, Y. Zheng, Y. Liu, J. Alloys Compd. 477, 764 (2009)

    Article  Google Scholar 

  6. X. Wang, Y. Wang, Y. Wang, B. Wang, J. Guo, Appl. Phys. Lett. 91, 163112 (2007)

    Article  ADS  Google Scholar 

  7. Z. Xu, G. Tang, F. Ding, S. Tian, H. Tian, Appl. Phys. A 88, 429 (2007)

    Article  ADS  Google Scholar 

  8. L. Guan, G. Tang, P. Chu, Y. Jiang, J. Mater. Res. 24, 3674 (2009)

    Article  ADS  Google Scholar 

  9. L. Guan, G. Tang, Y. Jiang, P.K. Chu, J. Alloys Compd. 487, 309 (2009)

    Article  Google Scholar 

  10. Y. Jiang, L. Guan, G. Tang, C. Shek, Z. Zhang, Mater. Sci. Eng. A 528, 5627 (2011)

    Article  Google Scholar 

  11. H. Nakayama, K. Tsuchiya, Z.G. Liu, M. Umemoto, K. Morii, T. Shimizu, Mater. Trans. 42, 1987 (2001)

    Article  Google Scholar 

  12. J. Ewert, I. Böhm, R. Peter, F. Haider, Acta Mater. 45, 2197 (1997)

    Article  Google Scholar 

  13. M. Piao, K. Otsuka, S. Miyazaki, H. Horikawa, Mater. Trans. 34, 919 (1993)

    Google Scholar 

  14. C.P. Frick, A.M. Ortega, J. Tyber, K. Gall, H.J. Maier, Metall. Mater. Trans. A 35, 2013 (2004)

    Article  Google Scholar 

  15. Y. Kudoh, M. Tokonami, S. Miyazaki, K. Otsuka, Acta Metall. 33, 2049 (1985)

    Article  Google Scholar 

  16. Y. Kim, G. Cho, S. Hur, S. Jeong, T. Nam, Mater. Sci. Eng. A 438, 531 (2006)

    Article  Google Scholar 

  17. V. Demers, V. Brailovski, S. Prokoshkin, K. Inaekyan, J. Mater. Process. Technol. 209, 3096 (2009)

    Article  Google Scholar 

  18. M. Peterlechner, J. Bokeloh, G. Wilde, T. Waitz, Acta Mater. 58, 6637 (2010)

    Article  Google Scholar 

  19. Y. Zheng, B. Huang, J. Zhang, L. Zhao, Mater. Sci. Eng. A 279, 25 (2000)

    Article  Google Scholar 

  20. K. Tsuchiya, T. Koike, J. Mater. Eng. Perform. 20, 517 (2011)

    Article  Google Scholar 

  21. K. Tsuchiya, Y. Hada, T. Koyano, K. Nakajima, M. Ohnuma, T. Koike, Y. Todaka, M. Umemoto, Scr. Mater. 60, 749 (2009)

    Article  Google Scholar 

  22. I. Karaman, A.V. Kulkarni, Z.P. Luo, Philos. Mag. 85, 1729 (2005)

    Article  ADS  Google Scholar 

  23. T. Waitz, V. Kazykhanov, H. Karnthaler, Acta Mater. 52, 137 (2004)

    Article  Google Scholar 

  24. D.A. Miller, D.C. Lagoudas, Mater. Sci. Eng. A 308, 161 (2001)

    Article  Google Scholar 

  25. Z. Xu, G. Tang, S. Tian, J. He, Mater. Sci. Eng. A 424, 300 (2006)

    Article  Google Scholar 

  26. G. Hu, C. Shek, Y. Zhu, G. Tang, X. Qing, Mater. Trans. 51, 1390 (2010)

    Article  Google Scholar 

  27. F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena (Pergamon, Elmsford, 2004), p. 23

    Google Scholar 

  28. K. Okazaki, M. Kagawa, H. Conrad, Mater. Sci. Eng. 45, 109 (1980)

    Article  Google Scholar 

  29. H. Conrad, Z. Guo, A. Sprecher, Scr. Metall. Mater. 24, 359 (1990)

    Article  Google Scholar 

  30. H. Conrad, N. Karam, S. Mannan, Scr. Metall. 17, 411 (1983)

    Article  Google Scholar 

  31. H. Conrad, Mater. Sci. Eng. A 287, 227 (2000)

    Article  Google Scholar 

  32. K. Okazaki, M. Kagawa, H. Conrad, Scr. Metall. 12, 1063 (1978)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 50571048). The authors would like to express their sincere thanks for the technical assistance from Mr. F.Y.F. Chan, Electron Microscope Unit, The Hong Kong University and Dr. H. Yin, Department of Mechanics, The Hong Kong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Y. Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, R.F., Tang, G.Y., Shi, S.Q. et al. Effect of electropulsing treatment on the microstructure and superelasticity of TiNi alloy. Appl. Phys. A 111, 1195–1201 (2013). https://doi.org/10.1007/s00339-012-7342-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7342-3

Keywords

Navigation