Skip to main content

Advertisement

Log in

Flexible and stretchable electrodes for dielectric elastomer actuators

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Dielectric elastomer actuators (DEAs) are flexible lightweight actuators that can generate strains of over 100 %. They are used in applications ranging from haptic feedback (mm-sized devices), to cm-scale soft robots, to meter-long blimps. DEAs consist of an electrode-elastomer-electrode stack, placed on a frame. Applying a voltage between the electrodes electrostatically compresses the elastomer, which deforms in-plane or out-of plane depending on design. Since the electrodes are bonded to the elastomer, they must reliably sustain repeated very large deformations while remaining conductive, and without significantly adding to the stiffness of the soft elastomer. The electrodes are required for electrostatic actuation, but also enable resistive and capacitive sensing of the strain, leading to self-sensing actuators. This review compares the different technologies used to make compliant electrodes for DEAs in terms of: impact on DEA device performance (speed, efficiency, maximum strain), manufacturability, miniaturization, the integration of self-sensing and self-switching, and compatibility with low-voltage operation. While graphite and carbon black have been the most widely used technique in research environments, alternative methods are emerging which combine compliance, conduction at over 100 % strain with better conductivity and/or ease of patternability, including microfabrication-based approaches for compliant metal thin-films, metal-polymer nano-composites, nanoparticle implantation, and reel-to-reel production of μm-scale patterned thin films on elastomers. Such electrodes are key to miniaturization, low-voltage operation, and widespread commercialization of DEAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. Unpublished results.

  2. Unpublished results.

  3. http://www.polypower.com.

  4. www.vivitouch.com.

  5. www.optotune.com.

  6. www.sbmoffshore.com.

References

  1. R.E. Pelrine, R.D. Kornbluh, J.P. Joseph, Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens. Actuators A, Phys. 64(1), 77–85 (1998)

    Article  Google Scholar 

  2. F. Carpi, S. Bauer, D. De Rossi, Stretching dielectric elastomer performance. Science 330(6012), 1759–1761 (2010)

    Article  ADS  Google Scholar 

  3. C. Keplinger, M. Kaltenbrunner, N. Arnold, S. Bauer, Roentgen’s electrode-free elastomer actuators without electromechanical pull-in instability. Proc. Natl. Acad. Sci. USA 107(10), 4505–4510 (2010)

    Article  ADS  Google Scholar 

  4. R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-speed electrically actuated elastomers with strain greater than 100 %. Science 287(5454), 836–839 (2000)

    Article  ADS  Google Scholar 

  5. F. Carpi, R. Kornbluh, P. Sommer-Larsen, G. Alici, Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications? Bioinspiration and Biomimetics 6(4), 045006 (2011)

    Article  ADS  Google Scholar 

  6. P. Brochu, Q. Pei, Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31(1), 10–36 (2010)

    Article  Google Scholar 

  7. R. Kornbluh, R. Pelrine, J. Eckerle, J. Joseph, Electrostrictive polymer artificial muscle actuators, in Proceedings of IEEE International Conference on Robotics and Automation, vol. 3 (1998), pp. 2147–2154

    Google Scholar 

  8. R. Kornbluh, R. Pelrine, Q. Pei, S. Oh, J. Joseph, Ultrahigh strain response of field-actuated elastomeric polymers, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 3987 (2000), pp. 51–64

    Google Scholar 

  9. R. Pelrine, R. Kornbluh, J. Joseph, R. Heydt, Q. Pei, S. Chiba, High-field deformation of elastomeric dielectrics for actuators. Materials Science and Engineering C 11(2), 89–100 (2000)

    Article  Google Scholar 

  10. J.D.W. Madden, N.A. Vandesteeg, P.A. Anquetil, P.G.A. Madden, A. Takshi, R.Z. Pytel, S.R. Lafontaine, P.A. Wieringa, I.W. Hunter, Artificial muscle technology: physical principles and naval prospects. IEEE J. Ocean. Eng. 29(3), 706–728 (2004)

    Article  Google Scholar 

  11. I.A. Anderson, T.A. Gisby, T.G. McKay, B.M. O’Brien, E.P. Calius, Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl. Phys. 112(4), 041101 (2012)

    Article  ADS  Google Scholar 

  12. I.A. Anderson, T. Hale, T. Gisby, T. Inamura, T. McKay, B. O’Brien, S. Walbran, E.P. Calius, A thin membrane artificial muscle rotary motor. Appl. Phys. A, Mater. Sci. Process. 98(1), 75–83 (2010)

    Article  ADS  Google Scholar 

  13. S. Wagner, S. Bauer, Materials for stretchable electronics. Mater. Res. Soc. Bull. 37(3), 207–213 (2012)

    Article  Google Scholar 

  14. D.-H. Kim, Y. Lu, N. Huang, J.A. Rogers, Materials for stretchable electronics in bioinspired and biointegrated devices. Mater. Res. Soc. Bull. 37(3), 226–235 (2012)

    Article  Google Scholar 

  15. T. Sekitani, T. Someya, Stretchable organic integrated circuits for large-area electronic skin surfaces. Mater. Res. Soc. Bull. 37(3), 236–245 (2012)

    Article  Google Scholar 

  16. J. Vanfleteren, M. Gonzalez, F. Bossuyt, Y.-Y. Hsu, T. Vervust, I. De Wolf, M. Jablonski, Printed circuit board technology inspired stretchable circuits. Mater. Res. Soc. Bull. 37(3), 254–260 (2012)

    Article  Google Scholar 

  17. D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K. Jun Yu, T.-i. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.-J. Chung, H. Keum, M. McCormick, P. Liu, Y.-W. Zhang, F.G. Omenetto, Y. Huang, T. Coleman, J.A. Rogers, Epidermal electronics. Science 333(6044), 838–843 (2011)

    Article  ADS  Google Scholar 

  18. P. Jean, A. Wattez, G. Ardoise, C. Melis, R. Van Kessel, A. Fourmon, E. Barrabino, J. Heemskerk, J.P. Queau, Standing wave tube electro active polymer wave energy converter, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 8340, ed. by Y. Bar-Cohen (SPIE, Bellingham, 2012), p. 83400C

    Google Scholar 

  19. B.M. O’Brien, E.P. Calius, T. Inamura, S.Q. Xie, I.A. Anderson, Dielectric elastomer switches for smart artificial muscles. Appl. Phys. A, Mater. Sci. Process. 100(2), 385–389 (2010)

    Article  ADS  Google Scholar 

  20. F. Carpi, P. Chiarelli, A. Mazzoldi, D. De Rossi, Dielectric elastomer planar actuators for small scale applications, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 4763 (2002), pp. 169–172

    Google Scholar 

  21. F. Carpi, P. Chiarelli, A. Mazzoldi, D. De Rossi, Electromechanical characterisation of dielectric elastomer planar actuators: comparative evaluation of different electrode materials and different counterloads. Sens. Actuators A, Phys. 107(1), 85–95 (2003)

    Article  Google Scholar 

  22. B. O’Brien, J. Thode, I. Anderson, E. Calius, E. Haemmerle, S. Xie, Integrated extension sensor based on resistance and voltage measurement for a dielectric elastomer, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 6524 (SPIE, San Diego, 2007), p. 652415

    Google Scholar 

  23. J.C. Huang, Carbon black filled conducting polymers and polymer blends. Adv. Polym. Technol. 21(4), 299–313 (2002)

    Article  Google Scholar 

  24. S.-P. Rwei, F.-H. Ku, K.-C. Cheng, Dispersion of carbon black in a continuous phase: electrical, rheological, and morphological studies. Colloid Polym. Sci. 280(12), 1110–1115 (2002)

    Article  Google Scholar 

  25. L.A. Toth, A.A. Goldenberg, Control system design for a dielectric elastomer actuator: the sensory subsystem, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 4695 (2002), pp. 323–334

    Google Scholar 

  26. K. Jung, K.J. Kim, H.R. Choi, A self-sensing dielectric elastomer actuator. Sens. Actuators A, Phys. 143(2), 343–351 (2008)

    Article  MathSciNet  Google Scholar 

  27. R. Kornbluh, R. Pelrine, J. Joseph, R. Heydt, Q. Pei, S. Chiba, High-field electrostriction of elastomeric polymer dielectrics for actuation, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 3669 (1999), pp. 149–161

    Google Scholar 

  28. H.F. Schlaak, M. Jungmann, M. Matysek, P. Lotz, Novel multilayer electrostatic solid-state actuators with elastic dielectric, in Electroactive Polymer Actuators and Devices (EAPAD) 2005, vol. 5759 (2005), pp. 121–133

    Chapter  Google Scholar 

  29. M. Matysek, P. Lotz, K. Flittner, H.F. Schlaak, High-precision characterization of dielectric elastomer stack actuators and their material parameters. in Proceedings of SPIE, vol. 6927 (2008)

    Google Scholar 

  30. H. Schlaak, P. Lotz, M. Matysek, Multilayer Stack Contractile Actuators (Elsevier, Amsterdam, 2008), pp. 109–122. Chap. 11

    Google Scholar 

  31. P. Lotz, H.F. Matysek, M. Schlaak, Fabrication and application of miniaturized dielectric elastomer stack actuators. IEEE/ASME Trans. Mechatron. 16(1), 58–66 (2011)

    Article  Google Scholar 

  32. G. Kofod, Dielectric elastomer actuators. Ph.D. Thesis, The Technical University of Denmark (2001)

  33. F. Carpi, C. Salaris, D. De Rossi, Folded dielectric elastomer actuators. Smart Mater. Struct. 16(2), S300–S305 (2007)

    Article  ADS  Google Scholar 

  34. M. Aschwanden, D. Niederer, A. Stemmer, Tunable transmission gratings based on dielectric elastomer actuators, in Electroactive Polymer Actuators and Devices (EAPAD) 2008, vol. 6927 (SPIE, San Diego, 2008), p. 56

    Chapter  Google Scholar 

  35. P. Lochmatter, G. Kovacs, Design and characterization of an active hinge segment based on soft dielectric eaps. Sens. Actuators A, Phys. 141(2), 577–587 (2008)

    Article  Google Scholar 

  36. G. Kovacs, L. During, Contractive tension force stack actuator based on soft dielectric eap, in Electroactive Polymer Actuators and Devices (EAPAD) 2009, vol. 7287, ed. by Y. Bar-Cohen, T. Wallmersperger (SPIE, Bellingham, 2009), p. 72870A

    Chapter  Google Scholar 

  37. F. Carpi, D. De Rossi, Dielectric elastomer cylindrical actuators: electromechanical modelling and experimental evaluation. Materials Science and Engineering C 24(4), 555–562 (2004)

    Article  Google Scholar 

  38. A.P. Gerratt, M. Tellers, S. Bergbreiter, Soft polymer mems, in Proccedings of IEEE 24th Int Micro Electro Mechanical Systems (MEMS) Conference (2011), pp. 332–335

    Google Scholar 

  39. M. Kujawski, J.D. Pearse, E. Smela, Elastomers filled with exfoliated graphite as compliant electrodes. Carbon 48(9), 2409–2417 (2010)

    Article  Google Scholar 

  40. J.J. Loverich, I. Kanno, H. Kotera, Concepts for a new class of all-polymer micropumps. Lab Chip 6(9), 1147–1154 (2006)

    Article  Google Scholar 

  41. M. Matysek, P. Lotz, T. Winterstein, H.F. Schlaak, Dielectric elastomer actuators for tactile displays, in Proceedings of 3rd Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, World Haptics 2009 (2009), pp. 290–295

    Chapter  Google Scholar 

  42. O.A. Araromi, A.T. Conn, C.S. Ling, J.M. Rossiter, R. Vaidyanathan, S.C. Burgess, Spray deposited multilayered dielectric elastomer actuators. Sens. Actuators A, Phys. 167(2), 459–467 (2011)

    Article  Google Scholar 

  43. M. Aschwanden, A. Stemmer, Low voltage, highly tunable diffraction grating based on dielectric elastomer actuators, in Electroactive Polymer Actuators and Devices (EAPAD) 2007, vol. 6524 (SPIE, San Diego, 2007), p. 65241N

    Chapter  Google Scholar 

  44. F.C. Krebs, Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93(4), 394–412 (2009)

    Article  Google Scholar 

  45. A.P. Robinson, I. Minev, I.M. Graz, S.P. Lacour, Microstructured silicone substrate for printable and stretchable metallic films. Langmuir 27(8), 4279–4284 (2011)

    Article  Google Scholar 

  46. E. Tekin, B.-J. De Gans, U.S. Schubert, Ink-jet printing of polymers—from single dots to thin film libraries. J. Mater. Chem. 14(17), 2627–2632 (2004)

    Article  Google Scholar 

  47. C. Keplinger, T. Li, R. Baumgartner, Z. Suo, S. Bauer, Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter 8, 285–288 (2012)

    Article  ADS  Google Scholar 

  48. S. Wang, P. Wang, T. Ding, Resistive viscoelasticity of silicone rubber/carbon black composite. Polym. Compos. 32(1), 29–35 (2011)

    Article  Google Scholar 

  49. S. Rosset, M. Niklaus, P. Dubois, M. Dadras, H.R. Shea, Mechanical properties of electroactive polymer microactuators with ion-implanted electrodes, in Electroactive Polymer Actuators and Devices (EAPAD) 2007, vol. 6524 (SPIE, San Diego, 2007), p. 652410

    Chapter  Google Scholar 

  50. A. Pimpin, Y. Suzuki, N. Kasagi, Microelectrostrictive actuator with large out-of-plane deformation for flow-control application. J. Microelectromech. Syst. 16(3), 753–764 (2007)

    Article  Google Scholar 

  51. R. Verplancke, F. Bossuyt, D. Cuypers, J. Vanfleteren, Thin-film stretchable electronics technology based on meandering interconnections: fabrication and mechanical performance. J. Micromech. Microeng. 22(1), 015002 (2012). doi:10.1088/0960-1317/22/1/015002

    Article  ADS  Google Scholar 

  52. M. Gonzalez, F. Axisa, M. Vanden Bulcke, D. Brosteaux, B. Vandevelde, J. Vanfleteren, Design of metal interconnects for stretchable electronic circuits. Microelectron. Reliab. 48(6), 825–832 (2008)

    Article  Google Scholar 

  53. A. Pimpin, Y. Suzuki, N. Kasagi, Micro electrostrictive actuator with metal compliant electrodes for flow control applications, in Proccedings of 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (2004), pp. 478–481

    Google Scholar 

  54. N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393(6681), 146–149 (1998). doi:10.1038/30193

    Article  ADS  Google Scholar 

  55. S.P. Lacour, J. Jones, Z. Suo, S.A. Wagner, S. Wagner, Design and performance of thin metal film interconnects for skin-like electronic circuits. IEEE Electron Device Lett. 25(4), 179–181 (2004)

    Article  ADS  Google Scholar 

  56. M. Maghribi, J. Hamilton, D. Polla, K. Rose, T. Wilson, P. Krulevitch, Stretchable micro-electrode array [for retinal prosthesis], in Conference on Microtechnologies in Medicine Biology 2nd Annual International IEEE-EMB Special Topic (2002), pp. 80–83

    Google Scholar 

  57. A.L. Volynskii, S. Bazhenov, O.V. Lebedeva, N.F. Bakeev, Mechanical buckling instability of thin coatings deposited on soft polymer substrates. J. Mater. Sci. 35(3), 547–554 (2000)

    Article  ADS  Google Scholar 

  58. M. Benslimane, P. Gravesen, P. Sommer-Larsen, Mechanical properties of dielectric elastomer actuators with smart metallic compliant electrodes, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 4695 (SPIE, Bellingham, 2002), pp. 150–157

    Google Scholar 

  59. H.-E. Kiil, M. Benslimane, Scalable industrial manufacturing of deap, in Proceedings of SPIE, vol. 7287 (2009)

    Google Scholar 

  60. M. Benslimane, H.-E. Kiil, M.J. Tryson, Electromechanical properties of novel large strain polypower film and laminate components for deap actuator and sensor applications, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 7642 (2010)

    Google Scholar 

  61. K. Sidler, O. Vazquez-Mena, V. Savu, G. Villanueva, M.A.F. van den Boogaart, J. Brugger, Resistivity measurements of gold wires fabricated by stencil lithography on flexible polymer substrates. Microelectron. Eng. 85(5–6), 1108–1111 (2008). Proceedings of the Micro- and Nano-Engineering 2007 Conference—MNE 2007

    Article  Google Scholar 

  62. O. Vazquez-Mena, G. Villanueva, V. Savu, K. Sidler, M.A.F. van den Boogaart, J. Brugger, Metallic nanowires by full wafer stencil lithography. Nano Lett. 8(11), 3675–3682 (2008). PMID: 18817451

    Article  ADS  Google Scholar 

  63. S. Perichon Lacour, S. Wagner, Z. Huang, Z. Suo, Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82(15), 2404–2406 (2003)

    Article  ADS  Google Scholar 

  64. T. Adrega, S.P. Lacour, Stretchable gold conductors embedded in pdms and patterned by photolithography: fabrication and electromechanical characterization. J. Micromech. Microeng. 20(5), 055025 (2010)

    Article  ADS  Google Scholar 

  65. L. Guo, S.P. DeWeerth, An effective lift-off method for patterning high-density gold interconnects on an elastomeric substrate. Small 6(24), 2847–2852 (2010)

    Article  Google Scholar 

  66. J.N. Patel, B.L. Gray, B. Kaminska, B.D. Gates, Flexible glucose sensor utilizing multilayer pdms process, in Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS’08 (2008), pp. 5749–5752

    Chapter  Google Scholar 

  67. J.N. Patel, B. Kaminska, B.L. Gray, B.D. Gates, A sacrificial su-8 mask for direct metallization on pdms. J. Micromech. Microeng. 19(11), 115014 (2009)

    Article  ADS  Google Scholar 

  68. R.M. Diebold, D.R. Clarke, Lithographic patterning on polydimethylsiloxane surfaces using polydimethylglutarimide. Lab Chip 11, 1694–1697 (2011)

    Article  Google Scholar 

  69. I.M. Graz, D.P.J. Cotton, S.P. Lacour, Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates. Appl. Phys. Lett. 94(7), 071902 (2009)

    Article  ADS  Google Scholar 

  70. S. Rosset, M. Niklaus, P. Dubois, H.R. Shea, Metal ion implantation for the fabrication of stretchable electrodes on elastomers. Adv. Funct. Mater. 19(3), 470–478 (2009)

    Article  Google Scholar 

  71. P. Dubois, S. Rosset, S. Koster, J.M. Buforn, J. Stauffer, S. Mikhailov, M. Dadras, N.F. De Rooij, H. Shea, Microactuators based on ion-implanted dielectric electroactive polymer membranes (eap), in Digest of Technical Papers—International Conference on Solid State Sensors and Actuators and Microsystems, TRANSDUCERS’05, vol. 2 (2005), pp. 2048–2051

    Google Scholar 

  72. P. Dubois, S. Rosset, S. Koster, J. Stauffer, S. Mikhailov, M. Dadras, N.-F. de Rooij, H. Shea, Microactuators based on ion implanted dielectric electroactive polymer (eap) membranes. Sens. Actuators A, Phys. 130(131), 147–154 (2006)

    Article  Google Scholar 

  73. S. Rosset, M. Niklaus, P. Dubois, H.R. Shea, Mechanical characterization of a dielectric elastomer microactuator with ion-implanted electrodes. Sens. Actuators A, Phys. 144(1), 185–193 (2008)

    Article  Google Scholar 

  74. M. Niklaus, H.R. Shea, Electrical conductivity and Young’s modulus of flexible nanocomposites made by metal-ion implantation of polydimethylsiloxane: the relationship between nanostructure and macroscopic properties. Acta Mater. 59(2), 830–840 (2011)

    Article  Google Scholar 

  75. G. Corbelli, C. Ghisleri, M. Marelli, P. Milani, L. Ravagnan, Highly deformable nanostructured elastomeric electrodes with improving conductivity upon cyclical stretching. Adv. Mater. 23(39), 4504–4508 (2011)

    Article  Google Scholar 

  76. A. Anders, S. Anders, I.G. Brown, Transport of vacuum arc plasmas through magnetic macroparticle filters. Plasma Sources Sci. Technol. 4(1), 1–12 (1995)

    Article  ADS  Google Scholar 

  77. S. Rosset, M. Niklaus, P. Dubois, H.R. Shea, Large-stroke dielectric elastomer actuators with ion-implanted electrodes. J. Microelectromech. Syst. 18(6), 1300–1308 (2009)

    Article  Google Scholar 

  78. K. Wegner, P. Piseri, H. Vahedi Tafreshi, P. Milani, Cluster beam deposition: a tool for nanoscale science and technology. J. Phys. D, Appl. Phys. 39(22), R439 (2006)

    Article  ADS  Google Scholar 

  79. S. Akbari, H.R. Shea, An array of 100 μm × 100 μm dielectric elastomer actuators with 80 % strain for tissue engineering applications. Sens. Actuators A, Phys. 186, 236–241 (2012)

    Article  Google Scholar 

  80. M.G. Urdaneta, R. Delille, E. Smela, Stretchable electrodes with high conductivity and photo-patternability. Adv. Mater. 19(18), 2629–2633 (2007)

    Article  Google Scholar 

  81. R. Delille, M. Urdaneta, K. Hsieh, E. Smela, Novel compliant electrodes based on platinum salt reduction, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 6168 (2006)

    Google Scholar 

  82. R. Delille, M. Urdaneta, K. Hsieh, E. Smela, Compliant electrodes based on platinum salt reduction in a urethane matrix. Smart Mater. Struct. 16(2), S272 (2007)

    Article  ADS  Google Scholar 

  83. W. Yuan, T. Lam, J. Biggs, L. Hu, Z. Yu, S. Ha, D. Xi, M.K. Senesky, G. Gruner, Q. Pei, New electrode materials for dielectric elastomer actuators, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 6524 (SPIE, San Diego, 2007), p. 65240N

    Google Scholar 

  84. W. Yuan, L. Hu, Z. Yu, T. Lam, J. Biggs, S.M. Ha, D. Xi, B. Chen, M.K. Senesky, G. Gruner, Q. Pei, Fault-tolerant dielectric elastomer actuators using single-walled carbon nanotube electrodes. Adv. Mater. 20(3), 621–625 (2008)

    Article  Google Scholar 

  85. G.-K. Lau, S.C.-K. Goh, L.-L. Shiau, Dielectric elastomer unimorph using flexible electrodes of electrolessly deposited (eld) silver. Sens. Actuators A, Phys. 169(1), 234–241 (2011)

    Article  Google Scholar 

  86. S.G. Chun-Kiat, G.-K. Lau, Dielectric elastomeric bimorphs using electrolessly deposited silver electrodes, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 7642 (2010)

    Google Scholar 

  87. S.H. Low, G.K. Lau, High actuation strain in silicone dielectric elastomer actuators with silver electrodes, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 7976 (2011), p. 797636

    Google Scholar 

  88. T. Lam, H. Tran, W. Yuan, Z. Yu, S. Ha, R. Kaner, Q. Pei, Polyaniline nanofibers as a novel electrode material for fault-tolerant dielectric elastomer actuators, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 6927, ed. by Y. Bar-Cohen (SPIE, Bellingham, 2008), p. 69270O

    Google Scholar 

  89. L. Hu, W. Yuan, P. Brochu, G. Gruner, Q. Pei, Highly stretchable, conductive, and transparent nanotube thin films. Appl. Phys. Lett. 94(16), 161108 (2009)

    Article  ADS  Google Scholar 

  90. S. Yun, X. Niu, Z. Yu, W. Hu, P. Brochu, Q. Pei, Compliant silver nanowire-polymer composite electrodes for bistable large strain actuation. Adv. Mater. 24(10), 1321–1327 (2012)

    Article  Google Scholar 

  91. S. Shian, R.M. Diebold, A. McNamara, D.R. Clarke, Highly compliant transparent electrodes. Appl. Phys. Lett. 101(6), 061101 (2012)

    Article  ADS  Google Scholar 

  92. F. Carpi, G. Frediani, S. Turco, D. De Rossi, Bioinspired tunable lens with muscle-like electroactive elastomers. Adv. Funct. Mater. 21(21), 4152–4158 (2011)

    Article  Google Scholar 

  93. Z. Yu, W. Yuan, P. Brochu, B. Chen, Z. Liu, Q. Pei, Large-strain, rigid-to-rigid deformation of bistable electroactive polymers. Appl. Phys. Lett. 95(19), 192904 (2009)

    Article  ADS  Google Scholar 

  94. F. Carpi, G. Frediani, D. De Rossi, Opportunities of hydrostatically coupled dielectric elastomer actuators for haptic interfaces, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 7976 (2011)

    Google Scholar 

  95. M. Matysek, P. Lotz, K. Flittner, H.F. Schlaak, Vibrotactile display for mobile applications based on dielectric elastomer stack actuators, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 7642, ed. by Y. Bar-Cohen (SPIE, Bellingham, 2010), p. 76420D

    Google Scholar 

  96. M. Matysek, H. Haus, H. Moessinger, D. Brokken, P. Lotz, H.F. Schlaak, Combined driving and sensing circuitry for dielectric elastomer actuators in mobile applications, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 7976, ed. by Y. Bar-Cohen, F. Carpi (SPIE, Bellingham, 2011), p. 797612

    Google Scholar 

  97. F. Carpi, D. De Rossi, Improvement of electromechanical actuating performances of a silicone dielectric elastomer by dispersion of titanium dioxide powder. IEEE Trans. Dielectr. Electr. Insul. 12(4), 835–843 (2005)

    Article  Google Scholar 

  98. Z. Zhang, L. Liu, J. Fan, K. Yu, Y. Liu, L. Shi, J. Leng, New silicone dielectric elastomers with a high dielectric constant, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 6926 (2008), p. 692610

    Google Scholar 

  99. S. Risse, B. Kussmaul, H. Kruger, R. Wache, G. Kofod, Dea material enhancement with dipole grafted pdms networks, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 7976 (2011), p. 79760N

    Google Scholar 

  100. I.M. Ward, J. Sweeney, The Mechanical Properties of Solid Polymers (Wiley, Chichester, 2004)

    Google Scholar 

  101. A.P. Gerratt, B. Balakrisnan, I. Penskiy, S. Bergbreiter, Batch fabricated bidirectional dielectric elastomer actuators, in 16th International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS’11 (2011), pp. 2422–2425

    Chapter  Google Scholar 

  102. A.P. Gerratt, I. Penskiy, S. Bergbreiter, Soi/elastomer process for energy storage and rapid release. J. Micromech. Microeng. 20(10), 104011 (2010)

    Article  ADS  Google Scholar 

  103. B. O’Brien, S. Rosset, I. Anderson, H. Shea, Ion implanted dielectric elastomer switches. Appl. Phys. A (2012, accepted). doi:10.1007/s00339-012-7319-2

  104. R.D. Kornbluh, R. Pelrine, H. Prahlad, A. Wong-Foy, B. McCoy, S. Kim, J. Eckerle, T. Low, From boots to buoys: promises and challenges of dielectric elastomer energy harvesting. in Proceedings of SPIE—The International Society for Optical Engineering, vol. 7976, ed. by Y. Bar-Cohen, F. Carpi (SPIE, Bellingham, 2011), p. 797605

    Google Scholar 

  105. S. Chiba, M. Waki, R. Kornbluh, R. Pelrine, Innovative power generators for energy harvesting using electroactive polymer artificial muscles, in Electroactive Polymer Actuators and Devices (EAPAD) 2008, vol. 6927, ed. by Y. Bar-Cohen (SPIE, Bellingham, 2008), p. 692715

    Chapter  Google Scholar 

  106. S.J.A. Koh, C. Keplinger, T. Li, S. Bauer, Z. Suo, Dielectric elastomer generators: how much energy can be converted? IEEE/ASME Trans. Mechatron. 16(1), 33–41 (2011)

    Article  Google Scholar 

  107. G. Kang, K.-S. Kim, S. Kim, Note: Analysis of the efficiency of a dielectric elastomer generator for energy harvesting. Rev. Sci. Instrum. 82(4), 046101 (2011)

    Article  ADS  Google Scholar 

  108. C.C. Foo, S.J.A. Koh, C. Keplinger, R. Kaltseis, S. Bauer, Z. Suo, Performance of dissipative dielectric elastomer generators. J. Appl. Phys. 111(9), 094107 (2012)

    Article  ADS  Google Scholar 

  109. T.G. McKay, B.M. O’Brien, E.P. Calius, I.A. Anderson, Soft generators using dielectric elastomers. Appl. Phys. Lett. 98(14), 142903 (2011)

    Article  ADS  Google Scholar 

  110. T. McKay, B. O’Brien, E. Calius, I. Anderson, Self-priming dielectric elastomer generators. Smart Mater. Struct. 19(5), 055025 (2010)

    Article  ADS  Google Scholar 

  111. R. Kaltseis, C. Keplinger, R. Baumgartner, M. Kaltenbrunner, T. Li, P. Mächler, R. Schwödiauer, Z. Suo, S. Bauer, Method for measuring energy generation and efficiency of dielectric elastomer generators. Appl. Phys. Lett. 99(16), 162904 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere thanks professor Siegfried Bauer for his precious advices regarding the preparation of the manuscript. The authors also thank Samin Akbari, Luc Maffli, and Benjamin O’Brien for their helpful collaboration. This work was supported by the Swiss National Science foundation grant 200020-140394, COST action MP1003, and the Indo Swiss joint research programme (ISJRP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Rosset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosset, S., Shea, H.R. Flexible and stretchable electrodes for dielectric elastomer actuators. Appl. Phys. A 110, 281–307 (2013). https://doi.org/10.1007/s00339-012-7402-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7402-8

Keywords

Navigation