Skip to main content
Log in

Effect of processing on dielectric properties of (0.95)PbZr0.52Ti0.48O3–(0.05)BiFeO3

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An effort has been made to synthesize solid solution of a composition with x=0.05 in the system (1−x)PbZr0.52Ti0.48O3–(x)BiFeO3 by the sol–gel method. XRD patterns of the pure PZT and BFO modified PZT samples have shown single phase formation. The effects of substitution of BFO on dielectric properties of PZT have been studied in the frequency range 10 Hz to 100 kHz and temperature range from RT to 773 K. The density was optimized by sintering the BFO modified PZT samples at different temperatures in four batches, S1, S2, S3 and S4. PE hysteresis loop measurements for all the samples have shown almost saturated polarization. It has been observed that sample S2, sintered at 950 °C, exhibits superior dielectric properties of the four samples. The occurrence of weak ferromagnetism, observed in the MH hysteresis loop, indicates coupling between ferroelectricity and magnetism. Impedance analysis has revealed that all the samples, sintered at different temperatures, have a different grain resistance. A large change in ac conductivity around T c has been observed in all the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971)

    Google Scholar 

  2. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature (London) 442, 759 (2006)

    Article  ADS  Google Scholar 

  3. R.E. Cohen, Nature (London) 358, 136 (1992)

    Article  ADS  Google Scholar 

  4. J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, Phys. Rev. B 71, 014113 (2005)

    Article  ADS  Google Scholar 

  5. V.R. Palkar, J. John, R. Pinto, Appl. Phys. Lett. 80, 1628 (2002)

    Article  ADS  Google Scholar 

  6. W.M. Zhu, Z.G. Ye, Appl. Phys. Lett. 89, 232904 (2006)

    Article  ADS  Google Scholar 

  7. J. Cheng, S. Yu, L.E. Cross, J. Chen, Z. Meng, Appl. Phys. Lett. 89, 122911 (2006)

    Article  ADS  Google Scholar 

  8. K. Singh, R.K. Kotnala, M. Singh, Appl. Phys. Lett. 93, 212902 (2008)

    Article  ADS  Google Scholar 

  9. A. Singh, V. Pandey, R.K. Kotnala, D. Pandey, Phys. Rev. Lett. 101, 247602 (2008)

    Article  ADS  Google Scholar 

  10. D.I. Woodward, I.M. Reaney, R.E. Eitel, C.A. Randall, J. Appl. Phys. 94, 3313 (2003)

    Article  ADS  Google Scholar 

  11. W.M. Zhu, H.Y. Guo, Z.G. Ye, J. Mater. Res. 22, 2136 (2007)

    Article  ADS  Google Scholar 

  12. M. Kumar, S.K. Srinath, G.S. Kumar, J. Magn. Magn. Mater. 188, 203 (1998)

    Article  ADS  Google Scholar 

  13. R.N.P. Choudhary, K. Perez, P. Bhattacharya, R.S. Katiyar, Appl. Phys. A 86, 131–138 (2007)

    Article  ADS  Google Scholar 

  14. P. Jagatheesan, M. Muneeswaran, R. Gokul, N.V. Giridharan, Adv. Mater. Res. 488–489, 310–414 (2012)

    Article  Google Scholar 

  15. J.R. Macdonold, Impedance Spectroscopy (Willey, New York, 1987)

    Google Scholar 

  16. J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132 (1990)

    Article  Google Scholar 

  17. R.K. Dwivedi, D. Kumar, O. Prakash, J. Mater. Sci. 36, 3657–3665 (2001)

    Article  ADS  Google Scholar 

  18. W. Chaisan, R. Yimnirm, S. Ananta, D.P. Chan, Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol. 132, 300–306 (2006)

    Article  Google Scholar 

  19. V.A. Isupov, Ferroelectrics 90, 113–118 (1989)

    Article  Google Scholar 

  20. D.K. Pradhan, R.N.P. Choudhary, T.K. Nath, Appl. Nanosci. (2012). doi:10.1007/s13204-012-0103-y

    Google Scholar 

  21. F. Yan, T.J. ZHU, M.O. Lai, L. Lu, J. Appl. Phys. 110, 114116 (2011)

    Article  ADS  Google Scholar 

  22. R.K. Dwivedi, D. Kumar, O. Parkash, J. Phys. D, Appl. Phys. 33, 88–95 (2000)

    Article  ADS  Google Scholar 

  23. R.D. Shanon, C.T. Prewitt, Acta Crystallogr., B Struct. Crystallogr. Cryst. Chem. 25, 925–945 (1969)

    Article  Google Scholar 

  24. R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21 (2007)

    Article  ADS  Google Scholar 

  25. D. Albrecht, S. Lisenkov, D. Rehmedov, I.A. Kornev, L. Bellaiche, Phys. Rev. B 81, 140401(R) (2010)

    Article  ADS  Google Scholar 

  26. D. Fasquelle, J.C. Carru, J. Eur. Ceram. Soc. 28, 2071–2074 (2008)

    Article  Google Scholar 

  27. C. Verdier, F.D. Morrison, D.C. Lupascu, J.F. Scott, J. Appl. Phys. 97, 024107 (2005)

    Article  ADS  Google Scholar 

  28. M. Martinez Gallego, A.R. West, J. Appl. Phys. 90, 394 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support from Department of Science and Technology, Government of India is gratefully acknowledged. One of the authors, Mr. Subhash is also thankful to Jaypee Institute of Information Technology, Noida 201307, India for Teaching Assistantship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Dwivedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S., Singh, V., Parkash, O. et al. Effect of processing on dielectric properties of (0.95)PbZr0.52Ti0.48O3–(0.05)BiFeO3 . Appl. Phys. A 112, 975–984 (2013). https://doi.org/10.1007/s00339-012-7458-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7458-5

Keywords

Navigation