Skip to main content
Log in

A comparison of genetic programming and neural networks; new formulations for electrical resistivity of Zn–Fe alloys

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

It is difficult to automatically solve a problem in a systematic method without using computers. In this study, a comparison between Neural Network (NN) and genetic programming (GEP) soft computing techniques as alternative tools for the formulation of electrical resistivity of zinc–iron (Zn–Fe) alloys for various compositions is proposed. Different formulations are supplied to control the verity and robustness of NN and GEP for the formulation to design composition and electrolyte conditions in certain ranges. The input parameters of the NN and GEP models are weight percentages of zinc and iron in the film and in the electrolyte, measurement temperature, and corrosion voltage of the films. The NN- and GEP-based formulation results are compared with experimental results and found to be quite reliable with a very high correlation (R 2=0.998 for GEP and 0.999 for NN).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A.H. Alavi, A.H. Gandomi, A robust data mining approach for formulation of geotechnical engineering systems. Eng. Comput. 28(3), 242–274 (2011)

    Article  Google Scholar 

  2. A.H. Alavi, A.H. Gandomi, Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing. Comput. Struct. 89(23–24), 2176–2194 (2011)

    Article  Google Scholar 

  3. A.F. Asbour, L.F. Alvarez, V.V. Toropov, Emprical modeling of shear strength of RC deep beams by genetic programming. Comput. Struct. 81(5), 331 (2003)

    Article  Google Scholar 

  4. A. Brenner, Electrodeposition of Alloys—Principles and Practice (Academic Press, New York, 1963)

    Google Scholar 

  5. E. Budman, R. Sizelove, www.metalfinishing.com

  6. A. Cevik, A new formulation for web crippling strength of cold-formed steel sheetingb using genetic programming. J. Constr. Steel Res. 63, 1305 (2007)

    Article  Google Scholar 

  7. A. Cevik, A.F. Cabalar, Modelling damping ratio and shear modulus of sand–mica mixtures using genetic programming. Expert Syst. Appl. 36(4), 7749–7757 (2009)

    Article  Google Scholar 

  8. C.T. Cheng, W.C. Wang, D.M. Xu, K.W. Chau, Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos. Water Resour. Manag. 22(7), 895–909 (2008)

    Article  Google Scholar 

  9. J.V. Davidson, D.A. Savic, G.A. Walters, Symbolic and numerical regression: experiments and application. Inf. Sci. 150(1/2), 95 (2003)

    Article  MathSciNet  Google Scholar 

  10. C. Ferreira, Gene expression programming in problem solving. Invited Tutorial of the 6th Online World Conference on Soft Computing in Industrial Applications, September 10–24, 2001

  11. C. Ferreira, Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst. 13(2), 87 (2001)

    MATH  Google Scholar 

  12. C. Ferreira, Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence (Angra do Heroismo, Portugal, 2002). ISBN 972-95890-5-4. http://www.gene-expressionprogramming.com/GepBook/Introduction.htm

    Google Scholar 

  13. A.H. Gandomi, A.H. Alavi, M.R. Mirzahosseini, F. Moghadas Nejad, Nonlinear genetic-based models for prediction of flow number of asphalt mixtures. J. Mater. Civ. Eng. 23(3), 248–263 (2011)

    Article  Google Scholar 

  14. W. Geertsma, Clustering of atoms and the metal non-metal transition. J. Phys. C, Solid State Phys. 18, 2461–2481 (1985)

    Article  ADS  Google Scholar 

  15. E. Güneyisi, M. Gesoğlu, T. Özturan, E. Özbay, Estimation of chloride permeability of concretes by empirical modeling: considering effects of cement type, curing condition and age. Constr. Build. Mater. 23(1), 469–481 (2009)

    Article  Google Scholar 

  16. C.K. Gupta, Chemical Metallurgy (Wiley-VCH, Weinheim, 2003), p. 7. ISBN:3-527-30376-6

    Book  Google Scholar 

  17. R. Hecht-Nielsen, Neurocomputing (Addison-Wesley, Reading, 1990)

    Google Scholar 

  18. T. Ji, T. Lin, X. Lin, A concrete mix proportion design algorithm based on artificial neural networks. Cem. Concr. Res. 36, 1399–1408 (2006)

    Article  Google Scholar 

  19. W. Jia, B. Ling, K.W. Chau, L. Heutte, Palmprint identification using restricted fusion. Appl. Math. Comput. 205(2), 927–934 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Jimenéz, H. Schmidt, Trat. Superf. 120, 26 (2003)

    Google Scholar 

  21. E. Kanca, M. Eskil, Comparison of new formulations for martensite start temperature of Fe–Mn–Si shape memory alloys using geneting programming and neural networks. Comput. Mater. Continua 10(1), 65–95 (2009)

    Google Scholar 

  22. İ.H. Karahan, Ö.F. Bakkaloğlu, Empirical modeling of magnetoresistance and electrical resistivity properties of electrodeposited CuCoNi alloys. J. Optoelectron. Adv. Mater. 11(3), 311–319 (2009)

    Google Scholar 

  23. İ.H. Karahan, H.S. Güder, Electrodeposition and properties of Zn, Zn–Ni, Zn–Fe and Zn–Fe–Ni alloys from acidic chloride–sulphate electrolytes. Inst. Met. Finish. 87(3), 155–158 (2009)

    Article  Google Scholar 

  24. İ.H. Karahan, J. Mater. Sci. 42(24), 10160–10163 (2007)

    Article  ADS  Google Scholar 

  25. İ.H. Karahan, R. Özdemir, A new modeling of electrical resistivity properties of ZnFe alloys using genetic programming. J. Optoelectron. Adv. Mater. 4(6), 812–815 (2010)

    Google Scholar 

  26. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, 1992)

    MATH  Google Scholar 

  27. D.C. Leitao, C.T. Sousa, J. Ventura, J.S. Amaral, F. Carpinteiro, K.R. Pirota, M. Vazquez, J.B. Sousa, J.P. Araujo, Characterization of electrodeposited Ni and Ni80Fe20 nanowires. J. Non-Cryst. Solids 354, 5241–5243 (2008)

    Article  ADS  Google Scholar 

  28. J.Y. Lin, C.T. Cheng, K.W. Chau, Using support vector machines for long-term discharge prediction. Hydrol. Sci. J. 51(4), 599–612 (2006)

    Article  Google Scholar 

  29. A.R. Lopez, G.M.L. Fdez, A. Garcia-Arribas, J. Herreros, M. Insausti, Preparation and characterisation of Cu–Co heterogeneous alloys by potentiostatic electrodeposition. Mater. Sci. Eng. A 335, 94–100 (2002)

    Article  Google Scholar 

  30. A. Mollahasani, A.H. Alavi, A.H. Gandomi, Empirical modeling of plate load test moduli of soil via gene expression programming. Comput. Geotech. 38(2), 281–286 (2011)

    Article  Google Scholar 

  31. N. Muttil, K.W. Chau, Machine learning paradigms for selecting ecologically significant input variables. Eng. Appl. Artif. Intell. 20(6), 735–744 (2007)

    Article  Google Scholar 

  32. C.S. Ong, J.J. Huang, G.H. Tzeng, Building credit scoring models using genetic programming. Expert Syst. Appl. 29(1), 41 (2005)

    Article  Google Scholar 

  33. R. Ramanauskas, Structural factor in Zn alloy electrodeposit corrosion. Appl. Surf. Sci. 153, 53–64 (1999)

    Article  ADS  Google Scholar 

  34. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning internal representation by error propagation, in Parallel Distributed Processing: Exploration in the Microstructure of Cognition, vol. 1, ed. by D.E. Rumelhart, J.L. McClleland (MIT Press, Cambridge, 1986)

    Google Scholar 

  35. N.R. Short, S. Zhou, J.K. Dennis, Electrochemical studies on the corrosion of a range of zinc alloy coated steel in alkaline solutions. Surf. Coat. Technol. 79(1–3), 218–224 (1996)

    Article  Google Scholar 

  36. R.E. Smallman, R.J. Bishop, Modern Physical Metallurgy and Materials Engineering, 6th edn. (Reed Educational and Professional Publishing Ltd., Oxford, 1999)

    Google Scholar 

  37. S. Strehle, J.W. Bartha, Wetzig electrical properties of electroplated Cu(Ag) thin films. Thin Solid Films 517, 3320–3325 (2009)

    Article  ADS  Google Scholar 

  38. A. Thakur, P.K. Ahluwalia, Electrical resistivity of NaSn compound forming liquid alloy using ab initio pseudopotentials. Physica B, Condens. Matter 373(1), 163–168 (2006)

    Article  ADS  Google Scholar 

  39. T. Tsuru, S. Kobayashi, T. Akiyama, H. Fukushima, S.K. Gogia, R. Kammel, Electrodeposition behaviour of zinc–iron group metal alloys from a methanol bath. J. Appl. Electrochem. 27, 209–214 (1997)

    Article  Google Scholar 

  40. J.X. Xie, C.T. Cheng, K.W. Chau, Y.Z. Pei, A hybrid adaptive time-delay neural network model for multi-step-ahead prediction of sunspot activity. Int. J. Environ. Pollut. 28(3–4), 364–381 (2006)

    Article  Google Scholar 

  41. X.S. Yang, A.H. Gandomi, S. Talatahari, A.H. Alavi, Metaheuristics in Water Resources, Geotechnical and Transportation Engineering (Elsevier, Waltham, 2012). ISBN:9780123982964

    Google Scholar 

  42. J. Zhang, K.W. Chau, Multilayer ensemble pruning via novel multi-sub-swarm particle swarm optimization. J. Univers. Comput. Sci. 15(4), 840–858 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Erkayman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karahan, İ.H., Ozdemir, R. & Erkayman, B. A comparison of genetic programming and neural networks; new formulations for electrical resistivity of Zn–Fe alloys. Appl. Phys. A 113, 459–476 (2013). https://doi.org/10.1007/s00339-013-7544-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7544-3

Keywords

Navigation