Skip to main content
Log in

Mechanical properties of g-GaN: a first principles study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigate the mechanical properties of proposed graphene-like hexagonal gallium nitride monolayer (g-GaN) using first-principles calculations based on density-functional theory. Compared to the graphene-like hexagonal boron nitride monolayer (g-BN), g-GaN is softer, with 40 % in-plane stiffness, 50 %, 46 %, and 42 % ultimate strengths in armchair, zigzag, and biaxial strains, respectively. However, g-GaN has a larger Poisson’s ratio, 0.43, about 1.9 times that of g-BN. It was found that the g-GaN also sustains much smaller strains before rupture. We obtained the second-, third-, fourth-, and fifth-order elastic constants for a rigorous continuum description of the elastic response of g-GaN. The second-order elastic constants, including in-plane stiffness, are predicted to monotonically increase with pressure while the Poisson’s ratio monotonically decreases with increasing pressure. The sound velocity of a compressional wave has a minima of 10 km/s at an in-plane pressure of 1 N/m, while as a shear wave’s velocity monotonically increases with pressure. The tunable sound velocities have promising applications in nano waveguides and surface acoustic wave sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.F. de Almeida Junior, F. de Brito Mota, C.M.C. de Castilho, A. Kakanakova-Georgieva, G.K. Gueorguiev, Defects in hexagonal-AlN sheets by first-principles calculations. Euro. Phys. J. B 85(1), 48 (2012)

    Article  ADS  Google Scholar 

  2. O. Landre, V. Fellmann, P. Jaffrennou, C. Bougerol, H. Renevier, A. Cros, B. Daudin, Molecular beam epitaxy growth and optical properties of AlN nanowires. Appl. Phys. Lett. 96(6), 061912 (2010)

    Article  ADS  Google Scholar 

  3. Z.-H. Yuan, S.-Q. Sun, Y.-Q. Duan, D.-J. Wang, Fabrication of densely packed AlN nanowires by a chemical conversion of Al2O3 nanowires based on porous anodic alumina film. Nanoscale Res. Lett. 4(10), 1126–1129 (2009)

    Article  ADS  Google Scholar 

  4. T. Xie, Y. Lin, G.S. Wu, X.Y. Yuan, Z. Jiang, C.H. Ye, G.W. Meng, L.D. Zhang, AlN serrated nanoribbons synthesized by chloride assisted vapor-solid route. Inorg. Chem. Commun. 7(4), 545–547 (2004)

    Article  Google Scholar 

  5. Q. Peng, W. Ji, S. De, First-principles study of the effects of mechanical strains on the radiation hardness of hexagonal boron nitride monolayers. Nanoscale 5, 695–703 (2013)

    Article  ADS  Google Scholar 

  6. H. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, S. Ciraci, Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys. Rev. B 80(15), 155453 (2009)

    Article  ADS  Google Scholar 

  7. Y. Taniyasu, M. Kasu, T. Makimoto, An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441(7091), 325–328 (2006)

    Article  ADS  Google Scholar 

  8. A. Khan, K. Balakrishnan, T. Katona, Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photonics 2(2), 77–84 (2008)

    Article  ADS  Google Scholar 

  9. F. Guinea, M.I. Katsnelson, A.K. Geim, Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6(1), 30–33 (2010)

    Article  Google Scholar 

  10. Y. Ma, Y. Dai, W. Wei, C. Niu, L. Yu, B. Huang, First-principles study of the Graphene@MoSe2 heterobilayers. J. Phys. Chem. C 115(41), 20237–20241 (2011)

    Article  Google Scholar 

  11. Z.H. Aitken, R. Huang, Effects of mismatch strain and substrate surface corrugation on morphology of supported monolayer graphene. J. Appl. Phys. 107(12), 123531 (2010)

    Article  ADS  Google Scholar 

  12. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385 (2008)

    Article  ADS  Google Scholar 

  13. X. Wei, B. Fragneaud, C.A. Marianetti, J.W. Kysar, Nonlinear elastic behavior of graphene: ab initio calculations to continuum description. Phys. Rev. B 80(20), 205407 (2009)

    Article  ADS  Google Scholar 

  14. Q. Peng, W. Ji, S. De, Mechanical properties of the hexagonal boron nitride monolayer: ab initio study. Comput. Mater. Sci. 56, 11 (2012)

    Article  Google Scholar 

  15. Q. Peng, W. Ji, S. De, Mechanical properties of graphyne monolayer: a first-principles study. Phys. Chem. Chem. Phys. 14, 13385–13391 (2012)

    Article  Google Scholar 

  16. C.A. Marianetti, H.G. Yevick, Failure mechanisms of graphene under tension. Phys. Rev. Lett. 105, 245502 (2010)

    Article  ADS  Google Scholar 

  17. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  18. G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994)

    Article  ADS  Google Scholar 

  19. G. Kresse, J. Furthuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  20. G. Kresse, J. Furthuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  21. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  22. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  23. J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  24. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994)

    Article  ADS  Google Scholar 

  25. R.O. Jones, O. Gunnarsson, The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61(3), 689–746 (1989)

    Article  ADS  Google Scholar 

  26. Q. Peng, C. Liang, W. Ji, S. De, A theoretical analysis of the effect of the hydrogenation of graphene to graphane on its mechanical properties. Phys. Chem. Chem. Phys. 15, 2003–2011 (2013)

    Article  Google Scholar 

  27. Q. Peng, C. Liang, W. Ji, S. De, A first principles investigation of the mechanical properties of g-tln. Model. Numer. Simul. Mater. Sci. 2, 76–84 (2012)

    Google Scholar 

  28. Q. Peng, C. Liang, W. Ji, S. De, A first principles investigation of the mechanical properties of g-ZnO: the graphene-like hexagonal zinc oxide monolayer. Comput. Mater. Sci. 68, 320–324 (2013)

    Article  Google Scholar 

  29. M. Topsakal, S. Cahangirov, S. Ciraci, The response of mechanical and electronic properties of graphane to the elastic strain. Appl. Phys. Lett. 96(9), 091912 (2010)

    Article  ADS  Google Scholar 

  30. J.F. Nye, Physical Properties of Crystals (Oxford Science, Oxford, 1995)

    Google Scholar 

  31. S.Yu. Davydov, Third order elastic moduli of single layer graphene. Phys. Solid State 53(3), 665 (2011)

    Article  ADS  Google Scholar 

  32. Q. Peng, S. De, Tunable band gaps of mono-layer hexagonal BNC heterostructures. Physica E 44, 1662–1666 (2012)

    Article  ADS  Google Scholar 

  33. Q. Peng, A.R. Zamiri, W. Ji, S. De, Elastic properties of hybrid graphene/boron nitride monolayer. Acta Mech. 223, 2591–2596 (2012)

    Article  MATH  Google Scholar 

  34. F. Everest, The Master Handbook of Acoustics (McGraw-Hill, New York, 2001)

    Google Scholar 

  35. E.R. Benes, R. Groschl, F. Seifert, A. Pohl, Comparison between BAW and SAW sensor principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(5), 1314–1330 (1998)

    Article  Google Scholar 

  36. R. Weigel, D.P. Morgan, J.M. Owens, A. Ballato, K.M. Lakin, K. Hashimoto, C.C.W. Ruppel, Microwave acoustic materials, devices, and applications. IEEE Trans. Microw. Theory Tech. 50(3), 738–749 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the generous financial support from the Defense Threat Reduction Agency (DTRA) Grant # BRBAA08-C-2-0130 and # HDTRA1-13-1-0025, the US Nuclear Regulatory Commission Faculty Development Program under contract # NRC-38-08-950, and US Department of Energy (DOE) Nuclear Energy University Program (NEUP) Grant # DE-NE0000325.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Q., Liang, C., Ji, W. et al. Mechanical properties of g-GaN: a first principles study. Appl. Phys. A 113, 483–490 (2013). https://doi.org/10.1007/s00339-013-7551-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7551-4

Keywords

Navigation