Skip to main content
Log in

Optoelectronics and formaldehyde sensing properties of tin-doped ZnO thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Sn-doped ZnO thin films were deposited on clean glass substrates using the chemical spray pyrolysis technique. XRD analyses confirm stable ZnO hexagonal wurtzite structure of the films with crystallite size in the range of 20–28 nm. The surface roughness of the films increases on Sn doping, which favors to higher adsorption of oxygen species on the film surface, resulting in higher gas response. Optical studies reveal that the band gap decreases on Sn doping. All the films show near band edge emission, and on Sn doping the luminescence peak intensity has been found to increase. Photocurrent in the 1.5 at.% doped film enhances about three times to that observed in the undoped ZnO film. Among all the films examined, the 1.5 at.% Sn-doped film exhibits the maximum response (∼94.5 %) at the operating temperature of 275 °C for 100 ppm concentration of formaldehyde, which is much higher than the response (∼35 %) in the undoped film. The gas response of the film is attributed to the chemisorption of oxygen on the film surface and the subsequent reaction between the adsorbed oxygen species and the formaldehyde molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. G.D. Nielsen, P. Wolkoff, Cancer effects of formaldehyde: a proposal for an indoor air guideline value. Arch. Toxicol. 84, 423–446 (2010)

    Article  Google Scholar 

  2. P. Lv, Z.A. Tang, J. Yu, F.T. Zhang, G.F. Wei, Z.X. Huang, Y. Hu, Study on a micro-gas sensor with SnO2-NiO sensitive film for indoor formaldehyde detection. Sens. Actuators B 132, 74–80 (2008)

    Article  Google Scholar 

  3. J. Wang, L. Liu, S.-Y. Cong, J.-Q. Qi, B.-K. Xu, An enrichment method to detect low concentration formaldehyde. Sens. Actuators B 134, 1010–1015 (2008)

    Article  Google Scholar 

  4. T. Seiyama, A. Kato, K. Nagatani, A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34, 1502–1503 (1962)

    Article  Google Scholar 

  5. N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: how to? Sens. Actuators B 121, 18–35 (2007)

    Article  Google Scholar 

  6. L. Zhang, J. Zhao, J. Zheng, L. Li, Z. Zhu, Shuttle-like ZnO nano/microrods: facile synthesis, optical characterization and high formaldehyde sensing properties. Appl. Surf. Sci. 258, 711–718 (2011)

    Article  ADS  Google Scholar 

  7. J. Yi, J.M. Lee, W.L.L. Park, Vertically aligned ZnO nanorods and hybrid architectures for high-sensitive flexible gas sensors. Sens. Actuators B 155, 264–269 (2011)

    Article  Google Scholar 

  8. L. Zhang, J. Zhao, H. Lu, L. Gong, L. Li, J. Zheng, H. Li, Z. Zhu, High sensitive and selective formaldehyde sensors based on nanoparticle-assembled ZnO micro-octahedrons synthesized by homogeneous precipitation method. Sens. Actuators B 160, 364–370 (2011)

    Article  Google Scholar 

  9. X. Chu, T. Chen, W. Zhang, B. Zheng, H. Shui, Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method. Sens. Actuators B 142, 49–54 (2009)

    Article  Google Scholar 

  10. N. Han, H.D. Liu, X.F. Wu, D.Y. Li, L.Y. Chai, Y.F. Chen, Pure Sn–Ga- and Mn-doped ZnO gas sensors working at different temperatures for formaldehyde, humidity, NH3, toluene and CO. Appl. Phys. A, Mater. Sci. Process. 104, 627–633 (2011)

    Article  ADS  Google Scholar 

  11. N. Han, Y. Tian, X. Wu, Y. Chen, Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO. Sens. Actuators B 138, 228–235 (2009)

    Article  Google Scholar 

  12. C. Xie, L. Xiao, M. Hu, Z. Bai, X. Xia, D. Zeng, Fabrication and formaldehyde gas-sensing property of ZnO–MnO2 coplanar gas sensor arrays. Sens. Actuators B 145, 457–463 (2010)

    Article  Google Scholar 

  13. N. Han, L. Chai, Q. Wang, Y. Tiam, P. Deng, Y. Chen, Evaluating the doping effect of Fe, Ti and Sn on gas sensing property of ZnO. Sens. Actuators B 147, 525–530 (2010)

    Article  Google Scholar 

  14. C.S. Prajapati, P.P. Sahay, Effect of precursors on structure, optical and electrical properties of chemically deposited nanocrystalline ZnO thin films. Appl. Surf. Sci. 258, 2823–2828 (2012)

    Article  ADS  Google Scholar 

  15. F.J. Sheini, M.A. More, S.R. Jadkar, K.R. Patil, V.K. Pillai, D.S. Joag, Observation of photoconductivity in Sn-doped ZnO nanowires and their photoenhanced field emission behavior. J. Phys. Chem. C 114, 3843–3849 (2010)

    Article  Google Scholar 

  16. S. llican, M. Caglar, Y. Caglar, Sn doping effects on the electro-optical properties of sol–gel derived transparent ZnO films. Appl. Surf. Sci. 256, 7204–7210 (2010)

    Article  ADS  Google Scholar 

  17. Y. Jin, Q. Yi, L. Zhou, D. Chen, H. He, Z. Ye, J. Hong, C. Jin, Synthesis and characterization of ultrathin tin-doped zinc oxide nanowires. Eur. J. Inorg. Chem. 2012, 4268–4272 (2012)

    Article  Google Scholar 

  18. J.-H. Lee, B.-O. Park, Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol–gel method. Thin Solid Films 426, 94–99 (2003)

    Article  ADS  Google Scholar 

  19. V. Shelke, M.P. Bhole, D.S. Patil, Open air annealing effect on the electrical and optical properties of tin doped ZnO nanostructure. Solid State Sci. 14, 705–710 (2012)

    Article  Google Scholar 

  20. V. Shelke, B.K. Sonawane, M.P. Bhole, D.S. Patil, Electrical and optical properties of transparent conducting tin doped ZnO thin films. J. Mater. Sci., Mater. Electron. 23, 451–456 (2012)

    Article  Google Scholar 

  21. C.-Y. Tsay, H.-C. Cheng, Y.-T. Tung, W.-H. Tuan, C.-K. Lin, Effect of Sn-doped on microstructural and optical properties of ZnO thin films deposited by sol–gel method. Thin Solid Films 517, 1032–1036 (2008)

    Article  ADS  Google Scholar 

  22. K.J. Chen, F.Y. Hung, Y.T. Chen, S.J. Chang, Z.S. Hu, Surface characteristics, optical and electrical properties on sol–gel synthesized Sn-doped ZnO thin film. Mater. Trans. 51, 1340–1345 (2010)

    Article  Google Scholar 

  23. J.I. Pankove, Optical processes in semiconductors (Prentice Hall, Englewood Cliffs, 1971)

    Google Scholar 

  24. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)

    Article  ADS  Google Scholar 

  25. W. Shan, W. Walukiewicz, J.W. Ager, K.M. Yu, H. Yuan, H.P. Xin, G. Cantwell, Nature of room-temperature photoluminescence in ZnO. Appl. Phys. Lett. 86, 191911 (2005)

    Article  ADS  Google Scholar 

  26. R. Yousefi, B. Kamaluddin, Effect of S- and Sn-doping to the optical properties of ZnO nanobelts. Appl. Surf. Sci. 255, 9376–9380 (2009)

    Article  ADS  Google Scholar 

  27. S. Ameen, M.S. Akhtar, H.-K. Seo, Y.S. Kim, H.S. Shin, Influence of Sn doping on ZnO nanostructures from nanoparticles to spindle shape and their photoelectrochemical properties for dye sensitized solar cells. Chem. Eng. J. 187, 351–356 (2012)

    Article  Google Scholar 

  28. R. Deng, X.T. Zhang, Effect of Sn concentration on structural and optical properties of zinc oxide nanobelts. J. Lumin. 128, 1442–1446 (2008)

    Article  Google Scholar 

  29. X.G. Zheng, Q.Sh. Li, W. Hu, D. Chen, N. Zhang, M.J. Shi, J.J. Wang, L.Ch. Wang, Photoconductive properties of ZnO thin films grown by pulsed laser deposition. J. Lumin. 122–123, 198–201 (2007)

    Article  Google Scholar 

  30. H.Q. Li, T. Gao, Y.G. Wang, T.H. Wang, Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements. Appl. Phys. Lett. 86, 123117 (2005)

    Article  ADS  Google Scholar 

  31. P.P. Sahay, R.K. Nath, Al-doped ZnO thin films as methanol sensors. Sens. Actuators B 134, 654–659 (2008)

    Article  Google Scholar 

  32. F. Hellegouarc’h, F. Arefi-Khonsari, R. Planade, J. Amouroux, PECVD prepared SnO2 thin films for ethanol sensors. Sens. Actuators B 73, 27–34 (2001)

    Article  Google Scholar 

  33. Z. Yang, Y. Huang, G. Chen, Z. Guo, S. Cheng, S. Huang, Ethanol gas sensor based on Al-doped ZnO nanomaterial with many gas diffusing channels. Sens. Actuators B 140, 549–556 (2009)

    Article  Google Scholar 

  34. O. Lupan, G. Chai, L. Chow, Noval hydrogen gas sensor based on single ZnO nanorods. Microelectron. Eng. 85, 2220–2225 (2008)

    Article  Google Scholar 

  35. N. Han, X.F. Wu, D. Zhang, G. Shen, H. Liu, Y. Chen, CdO activated Sn-doped ZnO for highly sensitive, selective and stable formaldehyde sensor. Sens. Actuators B 152, 324–329 (2011)

    Article  Google Scholar 

  36. P. Hu, N. Han, D. Zhang, J.C. Ho, Y. Chen, Highly formaldehyde-sensitive, transition-metal doped ZnO nanorods prepared by plasma-enhanced chemical vapor deposition. Sens. Actuators B 169, 74–80 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Professor M. Aslam, Department of Physics, Indian Institute of Technology, Bombay, India, for providing XRD, SEM, PL, and PC measurement facilities, respectively. AFM facility provided by Head, Institute Instrumentation Centre, Indian Institute of Technology, Roorkee, India, is gratefully acknowledged. Financial support provided by the University Grants Commission, New Delhi, India, in the form of a major research project (No. 40-450/2011 (SR)) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Sahay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prajapati, C.S., Kushwaha, A. & Sahay, P.P. Optoelectronics and formaldehyde sensing properties of tin-doped ZnO thin films. Appl. Phys. A 113, 651–662 (2013). https://doi.org/10.1007/s00339-013-7589-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7589-3

Keywords

Navigation