Skip to main content
Log in

Frequency- and voltage-dependent dielectric properties and electrical conductivity of Au/PVA (Bi-doped)/n-Si Schottky barrier diodes at room temperature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, frequency and voltage dependence of dielectric constant (ε′), dielectric loss (ε″), loss tangent (tanδ), the real and imaginary parts of electric modulus (M′ and M″) and ac electrical conductivity (σ ac) of an Au/PVA (Bi-doped)/n-Si Schottky barrier diode have been investigated in detail by using experimental CV and GV measurements in the wide frequency range of 5 kHz–10 MHz and the voltage range of ±2 V at room temperature. Experimental results indicate that the values of ε′,ε″, tanδ and σ ac are strongly frequency and voltage dependent. It has found that the values of ε′,ε″ and tanδ decrease while the values of σ ac, M′ and M″ increase. It is clear that the values of M″ show a distinctive peak with a U-shape and its position shifts towards the positive-bias region with increasing frequency. Such behavior of the peak can be attributed to the particular distribution of interface states located at the Si/PVA interface and interfacial polarization. It can be concluded that the interfacial polarization and the charge at the interface can easily follow the ac signal at low frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.H. Rhoderick, R.H. Williams, Metal–Semiconductor Contacts (Clarendon, Oxford, 1988)

    Google Scholar 

  2. T. Tunç, İ. Dökme, Ş. Altındal, İ. Uslu, J. Appl. Polym. Sci. 122, 265 (2011)

    Article  Google Scholar 

  3. I.M. Afandiyeva, M.M. Bülbül, Ş. Altındal, S. Bengi, Microelectron. Eng. 93, 50 (2012)

    Article  Google Scholar 

  4. M. Passlack, M. Hong, J.P. Mannaerts, Solid-State Electron. 39, 1133 (1996)

    Article  ADS  Google Scholar 

  5. İ. Dökme, Physica B 10, 388 (2007)

    Google Scholar 

  6. İ. Taşçıoğlu, U. Aydemir, Ş. Altındal, B. Kınacı, S. Özçelik, J. Appl. Phys. 109, 054502 (2011)

    Article  ADS  Google Scholar 

  7. S. Okur, F. Yakuphanoğlu, M. Özsoy, P. Kara Kadayıfçılar, Microelectron. Eng. 11, 2305 (2009)

    Article  Google Scholar 

  8. R. Şahingöz, H. Kanbur, M. Voigt, C. Soykan, Synth. Met. 158, 727 (2008)

    Article  Google Scholar 

  9. R.K. Gupta, K. Ghosh, P.K. Kahol, Curr. Appl. Phys. 9, 933 (2009)

    Article  ADS  Google Scholar 

  10. W.P. Kang, J.L. Davidson, Y. Gurbuz, D.V. Kerns, J. Appl. Phys. 78, 1101 (1995)

    Article  ADS  Google Scholar 

  11. P. Chowdhury, H.C. Barshilia, N. Selvakumar, B. Deepthi, K.S. Rajam, A.R. Chaudhuri, S.B. Krupanidhi, Physica B 403, 3718 (2008)

    Article  ADS  Google Scholar 

  12. R.F. Bhajantri, V. Ravindrachary, A. Harisha, C. Ranganathaiah, G.N. Kumaraswamy, Appl. Phys. A, Mater. Sci. Process. 87, 797 (2007)

    Article  ADS  Google Scholar 

  13. M. Mumtaz, N.A. Khan, Physica C 469, 182 (2009)

    Article  ADS  Google Scholar 

  14. N.A. Kahn, M. Mumtaz, A.A. Khurram, J. Appl. Phys. 104, 033916 (2008)

    Article  ADS  Google Scholar 

  15. S. Cavdar, H. Koralay, Ş. Altındal, J. Low Temp. Phys. 164, 102 (2011)

    Article  ADS  Google Scholar 

  16. L.L. Hench, J.L. West, Principles of Electronic Ceramics (Wiley, New York, 1990)

    Google Scholar 

  17. E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

  18. R. Castagne, A. Vapaille, Surf. Sci. 28(1), 157 (1971)

    Article  ADS  Google Scholar 

  19. S. Kar, S. Varma, J. Appl. Phys. 58(11), 4256 (1985)

    Article  ADS  Google Scholar 

  20. P. Chattopadhyay, B. RayChaudhuri, Solid-State Electron. 36, 605 (1993)

    Article  ADS  Google Scholar 

  21. E.H. Nicollian, A. Goetzberger, Bell Syst. Tech. J. 46, 1055 (1967)

    Article  Google Scholar 

  22. M. Gökçen, A. Tataroğlu, Ş. Altındal, M.M. Bülbül, Radiat. Phys. Chem. 77, 74 (2008)

    Article  Google Scholar 

  23. S. Demirezen, Z. Sönmez, U. Aydemir, Ş. Altındal, Curr. Appl. Phys. 12, 266 (2012)

    Article  ADS  Google Scholar 

  24. C.P. Smyth, Dielectric Behaviour and Structure (McGraw-Hill, New York, 1955)

    Google Scholar 

  25. V.V. Daniel, Dielectric Relaxation (Academic Press, London, 1967)

    Google Scholar 

  26. P. Pissis, A. Kyritsis, Solid State Ion. 97, 105 (1997)

    Article  Google Scholar 

  27. İ. Dökme, Ş. Altındal, M. Gökçen, Microelectron. Eng. 85, 1910 (2008)

    Article  Google Scholar 

  28. O. Pakma, N. Serin, T. Serin, Ş. Altındal, J. Phys. D, Appl. Phys. 41, 215103 (2008)

    Article  ADS  Google Scholar 

  29. M. Popescu, I. Bunget, Physics of Solid Dielectrics (Elsevier, Amsterdam, 1984)

    Google Scholar 

  30. A. Chelkowski, Dielectric Physics (Elsevier, Amsterdam, 1980)

    Google Scholar 

  31. I.M. Afandiyeva, I. Dökme, Ş. Altındal, M.M. Bülbül, A. Tataroğlu, Microelectron. Eng. 85, 247 (2008)

    Article  Google Scholar 

  32. H. Uslu, Ş. Altındal, T. Tunç, İ. Uslu, T.S. Mammadov, J. Appl. Polym. Sci. 120, 322 (2011)

    Article  Google Scholar 

  33. İ. Yücedağ, Ş. Altındal, A. Tataroğlu, Microelectron. Eng. 84, 180 (2007)

    Article  Google Scholar 

  34. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phys. Rev. B 49, 7868 (1994)

    Article  ADS  Google Scholar 

  35. A. Kyritsis, P. Pissis, J. Grammmatikakis, Polym. Sci. Polym. Phys. 33, 1737 (1995)

    Article  Google Scholar 

  36. Z. Tekeli, M. Gökçen, Ş. Altındal, S. Özçelik, E. Özbay, Microelectron. Reliab. 51, 581 (2011)

    Article  Google Scholar 

  37. B.R. Chakraborty, N. Dilawar, S. Pal, D.N. Bose, Thin Solid Films 411, 240 (2002)

    Article  ADS  Google Scholar 

  38. K.Y. Park, H.I. Cho, J.H. Lee, S.B. Bae, C.M. Jeon, J.L. Lee, D.Y. Kim, C.S. Lee, J.H. Lee, Phys. Status Solidi C 0(7), 2351 (2003)

    Article  Google Scholar 

  39. C.Y. Liu, T.Y. Tseng, Ceram. Int. 30, 1101 (2004)

    Article  Google Scholar 

  40. K. Prabakar, S.K. Narayandass, D. Mangalaraj, Phys. Status Solidi A 199, 507 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author wishes to express his gratitude to Prof. Dr. İbrahim Uslu and Prof. Dr. Şemsettin Altındal for their abundantly helpful support and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selçuk Demirezen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demirezen, S. Frequency- and voltage-dependent dielectric properties and electrical conductivity of Au/PVA (Bi-doped)/n-Si Schottky barrier diodes at room temperature. Appl. Phys. A 112, 827–833 (2013). https://doi.org/10.1007/s00339-013-7605-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7605-7

Keywords

Navigation