Skip to main content
Log in

AlN thin films prepared by ArF plasma assisted PLD. Role of process conditions on electronic and chemical–morphological properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Aluminium nitride thin films were deposited on n-Si <100> substrates by RF plasma activated reactive pulsed laser deposition (PLD). An ArF excimer pulsed laser, 10 Hz and 2.5 J/cm2 energy fluence, has been used to ablate a pure Al target in a reactive atmosphere of N2 plasma (generated by a RF source), at varying processing parameters (substrate temperature, time, and N2 plasma configuration). We studied the dependence and correlation of structural and electronic properties with the experimental conditions. The chemical composition of deposited material has been determined by both Raman and X-ray photoelectron spectroscopy (XPS). Electrical resistivity has been evaluated by the sheet resistance method. Both spectroscopic characterizations (Raman and XPS) show a strong dependence in the formation of AlN on the deposition temperature. At low temperatures, there is little formation of nitride, with a prevalence of aluminium oxide, while at higher temperatures the N uptake increases, with AlN formation. Raman analysis also highlights the formation of nano-structures, for temperatures ≥400C. These material characteristics have a fundamental influence on the electronic properties. Indeed, electrical resistivity properties have been found to be strongly dependent on the film structure, nitrogen incorporation, and presence of mixed oxide compounds, closely related to deposition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Liu, J. Gao, K.M. Wu, C. Liu, Solid State Commun. 149, 715 (2009)

    Article  ADS  Google Scholar 

  2. Y. Lu, X. Liu, X. Wang, D.C. Lu, D. Li, X. Han, G. Cong, Z. Wang, J. Cryst. Growth 263, 4 (2004)

    Article  ADS  Google Scholar 

  3. M. Clement, E. Iborra, J. Sangrador, A. Sanz-Hervas, L. Vergara, M. Aguilar, J. Appl. Phys. 94, 1495 (2003)

    Article  ADS  Google Scholar 

  4. P. Kung, A. Saxler, X. Zhang, D. Walker, T.C. Wang, I. Ferguson, M. Razeghi, Appl. Phys. Lett. 66, 2958 (1995)

    Article  ADS  Google Scholar 

  5. K.S. Stevens, A. Ohtani, M. Kinniburgh, R. Beresford, Appl. Phys. Lett. 65, 321 (1994)

    Article  ADS  Google Scholar 

  6. W.J. Meng, J. Heremans, Y.T. Chang, Appl. Phys. Lett. 59, 2097 (1991)

    Article  ADS  Google Scholar 

  7. R.D. Vispute, J. Narayan, H. Wu, K. Jagannadham, J. Appl. Phys. 77, 4724 (1995)

    Article  ADS  Google Scholar 

  8. G.K. Hubler, in Pulsed Laser Deposition of Thin Films, ed. by D.B. Chrisey, G.K. Hubler (Wiley-Interscience, New York, 1994), p. 327

    Google Scholar 

  9. J.D. Wu, J. Sun, Z.F. Ying, W. Shi, H. Ling, F.M. Li, Z.Y. Zhou, K.L. Wang, X.M. Ding, J. Vac. Sci. Technol. A 19, 299 (2001)

    Article  ADS  Google Scholar 

  10. K. Jagannadham, A.K. Sharma, Q. Wei, R. Kalyanraman, J. Narayan, J. Vac. Sci. Technol. A 16, 2804 (1998)

    Article  ADS  Google Scholar 

  11. P. Verardi, M. Dinescu, C. Gerardi, L. Mirenghi, V. Sandu, Appl. Surf. Sci. 109–110, 371 (1997)

    Article  Google Scholar 

  12. A.G. Guidoni, A. Mele, T.M. Di Palma, C. Flamini, S. Orlando, R. Teghil, Thin Solid Films 295, 77 (1997)

    Article  ADS  Google Scholar 

  13. A. Basillais, R. Benzerga, H. Sanchez, E. Le Menn, C. Boulmer-Leborgne, J. Perrier, Appl. Phys. A 80, 851 (2005)

    Article  ADS  Google Scholar 

  14. E. Cappelli, S. Orlando, D.M. Trucchi, A. Bellucci, V. Valentini, A. Mezzi, S. Kaciulis, Appl. Surf. Sci. 257, 5175 (2011)

    Article  ADS  Google Scholar 

  15. E. Cappelli, D.M. Trucchi, S. Kaciulis, S. Orlando, A. Zanza, A. Mezzi, Thin Solid Films 519, 4059 (2011)

    Article  ADS  Google Scholar 

  16. S. Kaciulis, L. Pandolfi, R. White, Surf. Interface Anal. 36, 845 (2004)

    Article  Google Scholar 

  17. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, Eden Prairie, 1995), p. 20

    Google Scholar 

  18. I. Bertoti, Surf. Coat. Technol. 151–152, 194 (2002)

    Article  Google Scholar 

  19. Y.G. Cao, X.L. Chen, Y.C. Lan, J.Y. Li, Y.P. Xu, T. Xu, Q.L. Liu, J.K. Liang, J. Cryst. Growth 213, 198 (2000)

    Article  ADS  Google Scholar 

  20. V.Yu. Davydov, Yu.E. Kitaev, I.N. Goncharuk, A.N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M.B. Smirnov, A.P. Mirgorodsky, R.A. Evarestov, Phys. Rev. B 58, 12899 (1998)

    Article  ADS  Google Scholar 

  21. N. Laidani, L. Vanzetti, M. Anderle, A. Basillais, C. Boulmer-Leborgne, J. Perriere, Surf. Coat. Technol. 122, 242 (1999)

    Article  Google Scholar 

  22. O. Elmazria, M.B. Assouar, P. Renard, P. Alnot, Phys. Status Solidi A 196, 416 (2003)

    Article  ADS  Google Scholar 

  23. J. Borges, N. Martin, N.P. Barradas, E. Alves, D. Eyidi, M.F. Beaufort, J.P. Riviere, F. Vaz, L. Marques, Thin Solid Films 520, 6709 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to P. Piciacchia for the excimer laser maintenance and to N. Vitulano for the RF plasma confined design and realization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Cappelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cappelli, E., Trucchi, D.M., Orlando, S. et al. AlN thin films prepared by ArF plasma assisted PLD. Role of process conditions on electronic and chemical–morphological properties. Appl. Phys. A 114, 611–617 (2014). https://doi.org/10.1007/s00339-013-7632-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7632-4

Keywords

Navigation