Skip to main content

Advertisement

Log in

Effect of explosive contact and non-contact shock-processing on structure, microstructure and mechanical characteristics of aluminum

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Contact and non-contact techniques are used to obtain monoliths of micro-sized aluminum powder under explosive shock loading. The measurement technique involves instrumented detonics to determine the velocity of detonation and compaction of powder in a single-shot experiment. The compacted specimens were examined for crystallographic, micro-strain, particle size, microstructure, mechanical strength, microhardness and density variations. Results indicate that non-contact technique gives rise to uniform thick compacts with negligible change in particle size, micro-strain, microhardness and microstructure with lower density. Whereas the compacts obtained by contact arrangement are accompanied by a substantial change in these parameters with higher density. Compacts of uniform density greater than 98 % theoretical value have been obtained by using explosive mixture of detonation velocity of 4.2 km/s. The compacted specimens possess micro-strain 2.8×10−3, microhardness (60±2)H v, tensile strength of 112 MPa and compressive strength of 116 MPa with elongation up to 6.4 %. Fracture/void free compacts obtained by contact arrangement have tremendous use in materials science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.R. Davis, Aluminium and Aluminium Alloys (ASM International, 1993)

  2. ASM Handbook, vol. 2 (1990)

  3. N.G. Alba-Baena, W. Salas, L.E. Murr, Mater. Charact. 59, 1152 (2008)

    Article  Google Scholar 

  4. J. Henrych, The Dynamics of Explosion and Its Use (Elsevier Science, New York, 1979)

    Google Scholar 

  5. W. Hermann, D.L. Hicks, E.C. Young, Shock Waves and the Mechanical Properties of Solids (Syracuse University Press, New York, 1971)

    Google Scholar 

  6. K. Shiva Kumar, T. Balakrishna Bhat, P. Ramakrishnan, J. Mater. Process. Technol. 73, 268 (1998)

    Article  Google Scholar 

  7. K. Shiva Kumar, P. Soloman Raj, T. Balakrishna Bhat, K. Hoamoto, J. Mater. Process. Technol. 115, 396 (2001)

    Article  Google Scholar 

  8. D. Raybould, D.G. Morris, G.A. Cooper, J. Mater. Sci. 14, 2523 (1979)

    Article  ADS  Google Scholar 

  9. D. Raybould, J. Mater. Sci. 16, 589 (1981)

    Article  ADS  Google Scholar 

  10. V.F. Nesterenko, A.V. Muzykantov, Combust. Explos. Shock Waves 21, 730 (1985)

    Article  Google Scholar 

  11. R.J. Patterson, A.R. Cox, E.C. Van Reuth, J. Met. 22, 34 (1980)

    Google Scholar 

  12. G.S. Clyens, W. Jonson, Mater. Sci. Eng. 30, 121 (1977)

    Article  Google Scholar 

  13. N.W. Page, D. Raybould, Mater. Sci. Eng. A 118, 179 (1989)

    Article  Google Scholar 

  14. N.N. Thadhani, A.H. Mutz, T. Vreeland, Acta Metall. 37, 897 (1989)

    Article  Google Scholar 

  15. M.A. Meyers, B. Bhushan Gupta, L.E. Murr, J. Met. 21 (1981)

  16. D.J. Benson, W.L. Nellis, Appl. Phys. Lett. 65, 418 (1994)

    Article  ADS  Google Scholar 

  17. M. Zohoor, A. Mehdipoor, J. Mater. Process. Technol. 209, 4201 (2009)

    Article  Google Scholar 

  18. A.D. Sharma, A.K. Sharma, N. Thakur, Philos. Mag. 92, 2108 (2012)

    Article  Google Scholar 

  19. S.S. Bhatsanov, Effects of Explosions on Materials (Springer, New York, 1994)

    Google Scholar 

  20. J.A. Zukas, Explosive Effects and Applications (Elsevier, New York, 1993)

    Google Scholar 

  21. A.A. Bukaemskii, E.N. Fedorova, Combust. Explos. Shock Waves 44, 717 (2008)

    Article  Google Scholar 

  22. D.G. Morris, M.A. Morris, Mater. Sci. Eng. A 104, 201 (1998)

    Google Scholar 

  23. D.G. Morris, Mater. Sci. Eng. 57, 589 (1983)

    Google Scholar 

  24. K.S. Baird, J.D. Williams, Powder Metall. 30, 281 (1987)

    Google Scholar 

  25. Z. Zhao, X.J. Li, T.A.O. Gang, J. Alloys Compd. 478, 237 (2009)

    Article  Google Scholar 

  26. K. Hokamoto, S. Tanaka, M. Fujita, R. Zhang, T. Kodama, T. Awano, Y. Ujimoto, J. Mater. Process. Technol. 85, 153 (1999)

    Article  Google Scholar 

  27. K. Hokamoto, S. Tanaka, M. Fujita, S. Itoh, M.A. Meyers, H.C. Chen, Physica B 239, 1 (1997)

    Article  ADS  Google Scholar 

  28. S. Tanaka, K. Hokamoto, M. Fujita, S. Itoh, T. Mashimo, Physica B 239, 16 (1997)

    Article  ADS  Google Scholar 

  29. W. Salas, N.G. Alba-Baena, L.E. Murr, Metall. Mater. Trans. A 38, 2928 (2007)

    Article  Google Scholar 

  30. Z. Zhao, X.J. Li, H.H. Yan, D.H. Liu, Combust. Explos. Shock Waves 44, 119–121 (2008)

    Article  Google Scholar 

  31. A.G. Mamalis, G.N. Gioftsidis, A. Szalay, J. Mech. Work. Technol. 19, 239 (1989)

    Article  Google Scholar 

  32. L.E.G. Cambronero, E. Gordo, J.M. Torralba, J.M. Ruiz Prieto, Mater. Sci. Eng. A 207, 36 (1996)

    Article  Google Scholar 

  33. A.G. Mamalis, I.N. Vottea, D.E. Manolakos, J. Mater. Process. Technol. 108, 165 (2001)

    Article  Google Scholar 

  34. M.A. Meyers, Dynamic Behavior of Materials (Wiley, New York, 1994)

    Book  MATH  Google Scholar 

  35. B.D. Cullity, Elements of XRD (Addison-Wesley, Reading, 1956)

    Google Scholar 

  36. G.K. Williamson, W.H. Hall, Acta Metall. 1(22), 31 (1953)

    Google Scholar 

  37. B. Morosin, X-Ray Diffraction Line Broadening of Shock-Modified Ceramic Powders (Trans. Tech. Pub., 1987), pp. 285–335

  38. V. Biju, V. Vrinda, S.L. Salini, J. Mater. Sci. 43, 1175 (2008)

    Article  ADS  Google Scholar 

  39. M. Hermann, W. Engel, H. Gobel, Advances in X-Ray Analysis (JCPDS, New York, 2002)

    Google Scholar 

  40. K. Sivakumar, K. Hokamoto, J. Mater. Sci. 35, 5823 (2000)

    Article  Google Scholar 

  41. K. Sivakumar, K.S. Prasad, T. Balakrishna Bhat, P. Ramakrishan, J. Mater. Sci. 32, 5271 (1997)

    Article  ADS  Google Scholar 

  42. T. Rzychon, K. Rodak, Arch. Mater. Sci. Eng. 28, 605 (2007)

    Google Scholar 

  43. P.C. Lysne, W.J. Halpin, J. Appl. Phys. 39, 5488 (1968)

    Article  ADS  Google Scholar 

  44. S.L. Wang, M.A. Meyers, A. Szecket, J. Mater. Sci. 23, 1786 (1988)

    Article  ADS  Google Scholar 

  45. M.A. Meyers, D.J. Benson, E.A. Oleveky, Pergamon 47, 2089 (1999)

    Google Scholar 

  46. L.E. Murr, S.M. Tuominen, A.W. Hare, S.H. Wang, Mater. Sci. Eng. 57, 107 (1983)

    Article  Google Scholar 

  47. B.M. Butcher, M.M. Carrol, A.C. Holt, J. Appl. Phys. 45, 3864 (1974)

    Article  ADS  Google Scholar 

  48. B.M. Buther, C.N. Karnes, J. Appl. Phys. 40, 2967 (1969)

    Article  ADS  Google Scholar 

  49. D.G. Morris, J. Mater. Sci. 21, 1111 (1986)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Defence Research and Development Organization (DRDO), India, for Grant-in-aid project No. ERIP/ER/0703665/M/01/1044. Special thanks go to the University Grants Commission (UGC)—New Delhi, India, for providing Research Fellowship No. F.4-1/2006 (BSR)/11-08/2008. Thanks are also due to the Director of TBRL and the entire trial team for necessary assistance in carrying out the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, A.D., Sharma, A.K. & Thakur, N. Effect of explosive contact and non-contact shock-processing on structure, microstructure and mechanical characteristics of aluminum. Appl. Phys. A 111, 783–789 (2013). https://doi.org/10.1007/s00339-013-7649-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7649-8

Keywords

Navigation