Skip to main content
Log in

Fabrication and performance characterization of Al/Ni multilayer energetic films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Al/Ni multilayer bridge films, which were composed of alternate Al and Ni layers with bilayer thicknesses of 50, 100 and 200 nm, were prepared by RF magnetron sputtering. In each bilayer, the thickness ratio of Al to Ni was maintained at 3:2 to obtain an overall 1:1 atomic composition. The total thickness of Al/Ni multilayer films was 2 μm. XRD measurements show that the compound of AlNi is the final product of the exothermic reactions. DSC curves show that the values of heat release in Al/Ni multilayer films with bilayer thicknesses of 50, 100 and 200 nm are 389.43, 396.69 and 409.92 J g−1, respectively. The temperatures of Al/Ni multilayer films were obviously higher than those of Al bridge film and Ni bridge film. Al/Ni multilayer films with modulation of 50 nm had the highest electrical explosion temperature of 7000 K. The exothermic reaction in Al/Ni multilayer films leads to a more intense electric explosion. Al/Ni multilayer bridge films with modulation period of 50 nm explode more rapidly and intensely than other bridge films because decreasing the bilayer thickness results in an increased reaction velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I.E. Gunduz, K. Fadenberger, M. Kokonou, C. Rebholz, C.C. Doumanidis, Appl. Phys. Lett. 93, 134101 (2008)

    Article  ADS  Google Scholar 

  2. K. Fadenberger, I.E. Gunduz, C. Tsotsos, M. Kokonou, S. Gravani, S. Brandstetter, A. Bergamaschi, B. Schmitt, P.H. Mayrhofer, C.C. Doumanidis, C. Rebholz, Appl. Phys. Lett. 97, 144101 (2010)

    Article  ADS  Google Scholar 

  3. X.T. Qiu, R. Tang, R.R. Liu, H. Huang, S.M. Guo, H.Y. Yu, J. Mater. Sci., Mater. Electron. 23, 2140 (2012)

    Article  Google Scholar 

  4. M. Milosavljevic, N. Stojanovic, D. Perusko, B. Timotijevic, D. Toprek, J. Kovac, G. Drazic, C. Jeynes, Appl. Surf. Sci. 258, 2043 (2012)

    Article  ADS  Google Scholar 

  5. C. Yang, Y. Hu, R.Q. Shen, Y.H. Ye, S.X. Wang, C.C. Li, Adv. Mater. Res. 557–559, 1782 (2012)

    Google Scholar 

  6. S. Tanaka, K. Kondo, Sens. Actuators A, Phys. 144, 361 (2008)

    Article  Google Scholar 

  7. K.L. Zhang, C. Rossi, G.A.A. Rodriguez, C. Tenailleau, P. Alphonse, Appl. Phys. Lett. 91, 113117 (2007)

    Article  ADS  Google Scholar 

  8. T.A. Baginski, T.S. Praker, U.S. Patent 6,772,692, 2004

    Google Scholar 

  9. K.L. Zhang, S.K. Chou, S.S. Ang, Sens. Actuators A, Phys. 122, 113 (2005)

    Article  Google Scholar 

  10. C. Rossi, K.L. Zhang, D. Esteve, P. Alphonse, P. Tailhades, J. Microelectromech. Syst. 16, 919 (2007)

    Article  Google Scholar 

  11. S. Tanaka, K. Kondo, Sens. Actuators A, Phys. 144, 361 (2008)

    Article  Google Scholar 

  12. K.L. Zhang, C. Rossi, M. Petrantoni, J. Microelectromech. Syst. 17, 832 (2008)

    Article  Google Scholar 

  13. K.L. Zhang, C. Rossi, P. Alphonse, Appl. Phys. A, Mater. Sci. Process. 94, 957 (2009)

    Article  ADS  Google Scholar 

  14. K.L. Zhang, Y. Yang, E.Y.B. Pun, Nanotechnology 21, 235602 (2010)

    Article  ADS  Google Scholar 

  15. C.J. Morris, B. Mary, E. Zakar, J. Phys. Chem. Solids 71, 84 (2010)

    Article  ADS  Google Scholar 

  16. P. Zhu, R.Q. Shen, N.N. Fiadosenka, Y.H. Ye, Y. Hu, J. Appl. Phys. 109, 084523 (2011)

    Article  ADS  Google Scholar 

  17. X. Zhou, R.Q. Shen, Y.H. Ye, P. Zhu, Y. Hu, J. Appl. Phys. 110, 094505 (2011)

    Article  ADS  Google Scholar 

  18. A.J. Gavens, D.V. Heerden, A.B. Mann, M.E. Reiss, T.P. Weihs, J. Appl. Phys. 87, 1255 (2000)

    Article  ADS  Google Scholar 

  19. M.R. Sharafutdinov, M.A. Korchagin, N.F. Shkodich, B.P. Tolochko, P.A. Tsygankov, I.Y. Yagubova, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 575, 149 (2007)

    Article  ADS  Google Scholar 

  20. E. Ma, C.V. Thompason, J. Appl. Phys. 69, 2211 (1991)

    Article  ADS  Google Scholar 

  21. W.C. Zhang, B.Q. Yin, R.Q. Shen, J.H. Ye, J.A. Thomas, Y.M. Chao, ACS Appl. Mater. Interfaces 5, 239 (2013)

    Article  Google Scholar 

  22. T. Namazu, H. Takemoto, H. Fujita, Y. Nagai, S. Inoue, in IEEE International Conference on MEMS, Istanbul, Turkey (2006), p. 286

    Google Scholar 

  23. V.A. Burtsev, N.V. Kalinin, A.V. Luchinskii, Electric Explosion of Conductors and Its Application in Electrophysical Facilities (Energoatomizdat, Moscow, 1990) (in Russian)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by NUST Research Fund (No. 2011YBXM09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Hu, Y., Shen, R. et al. Fabrication and performance characterization of Al/Ni multilayer energetic films. Appl. Phys. A 114, 459–464 (2014). https://doi.org/10.1007/s00339-013-7666-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7666-7

Keywords

Navigation