Skip to main content
Log in

Thermal resistance of CNTs-based thermal interface material for high power solid state device packages

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Vertically aligned carbon nanotubes (VACNTs) were synthesized over copper substrate. The diameter and length of the CNTs were 100 nm and 2–3 μm, respectively. Synthesis of CNTs was confirmed by Raman spectrum and verified by TEM as multi walled CNTs. SEM images showed the vertically aligned CNTs over Cu substrate. Strengthening of CNTs was performed by filling with Cu and SU-8 epoxy sealant in gap between the CNTs. The observed density was high for epoxy sealed CNTs. The bending ability of CNTs was checked and observed as low for epoxy sealed CNTs. The thermal resistance of the samples was measured by JESD51-2 standard for various loads. The observed resistance was low (0.277 cm2 K/W) for epoxy sealed CNTs at 1100 kPa. The calculated resistance of CNTs alone was 0.097 cm2 K/W for epoxy sealed at 900 kPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Berber, Y.-K. Kwon, D. Tomanek, Phys. Rev. Lett. 84, 4613 (2000)

    Article  ADS  Google Scholar 

  2. M. Yu, O. Lourie, M. Dyer, K. Moloni, T. Kelly, R.S. Ruoff, Science 287, 637 (2000)

    Article  ADS  Google Scholar 

  3. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282, 1105 (1998)

    Article  ADS  Google Scholar 

  4. G. Nessim, D. Acquaviva, M. Seita, K. O’Brien, C. Thompson, Adv. Funct. Mater. 20, 1306 (2010)

    Article  Google Scholar 

  5. K. Kordas, G. Toth, P. Moilanen, M. Kumpumaki, J. Vahakangas, A. Uusimaki, R. Vajtai, P. Ajayan, Appl. Phys. Lett. 90, 123105 (2007) (3 pages)

    Article  ADS  Google Scholar 

  6. L. Zhu, D.W. Hess, C.P. Wong, Assembling carbon nanotube films as thermal interface materials, in Proc. Conference on Electronics Components and Technology (IEEE Press, New York, 2007), pp. 2006–2010

    Google Scholar 

  7. B.A. Cola, X. Xu, T. Fisher, Appl. Phys. Lett. 90, 093513 (2007)

    Article  ADS  Google Scholar 

  8. J. Xu, T. Fisher, Int. J. Heat Mass Transf. 49, 1658 (2006)

    Article  Google Scholar 

  9. B.A. Cola, X. Xu, T. Fisher, M. Capano, P. Amana, Nanoscale Microscale Thermophys. Eng. 12, 228 (2008)

    Article  Google Scholar 

  10. H. Wang, J. Feng, X. Hu, K.M. Ng, J. Phys. Chem. C 111, 12617 (2007)

    Article  Google Scholar 

  11. Q. Ngo, B.A. Cruden, A.M. Cassell, G. Sims, M. Meyyappan, J. Li, C.Y. Yanget, Nano Lett. 4, 2403 (2004)

    Article  ADS  Google Scholar 

  12. W. Lin, R. Zhang, K.-S. Moon, C.P. Wong, Carbon 48, 107 (2010)

    Article  Google Scholar 

  13. G. Cabral, E. Titus, D.S. Misra, J. Gracio, J. Nanosci. Nanotechnol. 8, 4029 (2008)

    Article  Google Scholar 

  14. W. Lin, C. Wong, Synthesis of vertically aligned multi-walled carbon nanotubes on copper substrates for applications as thermal interface materials, in 2009 MRS Spring Meeting. MRS Proceedings, vol. 1158, (2009)

    Google Scholar 

  15. W. Lin, R. Zhang, K.-S. Moon, C.P. Wong, IEEE Trans. Adv. Packaging 33, 370 (2010)

    Article  Google Scholar 

  16. B.A. Cola, J. Xu, C. Cheng, X. Xu, T.S. Fisher, H. Hu, J. Appl. Phys. 101, 054313 (2007)

    Article  ADS  Google Scholar 

  17. Y. Gao, J. Liu, M. Shi, S.H. Elder, J.W. Virden, Appl. Phys. Lett. 74, 3642 (1999)

    Article  ADS  Google Scholar 

  18. S. Agrawal, M.J. Frederick, F. Lupo, P. Victor, O. Nalamasu, G. Ramanath, Adv. Funct. Mater. 15, 1922 (2005)

    Article  Google Scholar 

  19. B. Wang, X. Liu, H. Liu, D. Wu, H. Wang, J. Jiang, X. Wang, P. Hu, Y. Liu, D. Zhu, J. Mater. Chem. 13, 1124 (2003)

    Article  Google Scholar 

  20. N. Gilani, J.T. Daryan, A. Rashidi, M.R. Omidkhah, Appl. Surf. Sci. 258, 4819 (2012)

    Article  ADS  Google Scholar 

  21. Z. Gao, K. Zhang, M.M.F. Yuen, Fabrication of carbon nanotube thermal interface material on aluminum alloy substrates, in Proc. 11th International Conference on Electronic Packaging Technology & High Density Packaging, Xi’an (2010), pp. 1401–1408

    Google Scholar 

  22. D.D.L. Chung, Appl. Therm. Eng. 21, 1593 (2001)

    Article  Google Scholar 

  23. B.A. Cola, Photoacoustic characterization and optimization of carbon nanotube array thermal interfaces. Ph.D. Dissertation, Purdue University, West Lafayette, IN (2008)

  24. J. Xu, T.S. Fisher, Enhanced thermal contact conductance using carbon nanotube arrays, in Proc. 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM 2004) (IEEE Press, New York, 2004), pp. 549–555

    Google Scholar 

  25. W. Lin, J. Shang, W. Gu, C.P. Wong, Carbon 50, 1591 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shanmugan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y.T., Shanmugan, S. & Mutharasu, D. Thermal resistance of CNTs-based thermal interface material for high power solid state device packages. Appl. Phys. A 114, 1145–1152 (2014). https://doi.org/10.1007/s00339-013-7676-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7676-5

Keywords

Navigation