Skip to main content
Log in

Effect of transition metal (Fe, Cu, Ni, Rh)-doped small silver chains on optics of plasmon resonances

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Doping can control and tune the optical properties of current nanoalloys. In this study, the optical generation of plasmon resonance mode in pure-Ag and transition metal (Fe, Cu, Ni, Rh) single-doped Ag chains is investigated using time-dependent density functional theory. Results show that the redshift of plasmon energy appears and intensity of longitudinal mode enhances with increasing the number of Ag atoms in pure silver chains. The Ag chains doped with transition metal (TM) atom create an additional peak with a local plasmon resonance mode which is related to charge redistribution in the chain around TM atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.N. Lewis, Chem. Rev. 93, 2693 (1993)

    Article  Google Scholar 

  2. G.K. Darbha, A. Ray, P.C. Ray, ACS Nano 1, 208 (2007)

    Article  Google Scholar 

  3. M.L. Brongersma, J.W. Hartman, H.A. Atwater, Phys. Rev. B 62, 16356 (2000)

    Article  ADS  Google Scholar 

  4. E.C. Dreaden, M.A. Mackey, X.H. Huang, B. Kang, M.A. El-Sayed, Chem. Soc. Rev. 40, 3391 (2011)

    Article  Google Scholar 

  5. R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 845 (2008)

    Article  Google Scholar 

  6. H. Haberland, B. Vonissendorff, Y.F. Ji, T. Kolar, Phys. Rev. Lett. 69, 3212 (1992)

    Article  ADS  Google Scholar 

  7. S. Grabowski, M.E. Garcia, K.H. Bennemann, Phys. Rev. Lett. 72, 3969 (1994)

    Article  ADS  Google Scholar 

  8. P. Segovia, D. Purdie, M. Hengsberger, Y. Baer, Nature 402, 504 (1999)

    Article  ADS  Google Scholar 

  9. T. Nagao, S. Yaginuma, T. Inaoka, T. Sakurai, Phys. Rev. Lett. 97, 116802 (2006)

    Article  ADS  Google Scholar 

  10. S. Kümmel, K. Andrae, P.G. Reinhard, Appl. Phys. B, Lasers Opt. 73, 293 (2001)

    Article  ADS  Google Scholar 

  11. B. Delley, J. Chem. Phys. 92, 508 (1990)

    Article  ADS  Google Scholar 

  12. B. Delley, J. Chem. Phys. 113, 7756 (2000)

    Article  ADS  Google Scholar 

  13. N. Nilius, T.M. Wallis, W. Ho, Science 297, 1853 (2002)

    Article  ADS  Google Scholar 

  14. G.V. Nazin, X.H. Qiu, W. Ho, Phys. Rev. Lett. 90, 216110 (2003)

    Article  ADS  Google Scholar 

  15. W.H. Weber, G.W. Ford, Phys. Rev. B 70, 125429 (2004)

    Article  ADS  Google Scholar 

  16. Q.H. Wei, K.H. Su, S. Durant, X. Zhang, Nano Lett. 4, 1067 (2004)

    Article  ADS  Google Scholar 

  17. S.L. Zou, N. Janel, G.C. Schatz, J. Chem. Phys. 120, 10871 (2004)

    Article  ADS  Google Scholar 

  18. S.L. Zou, G.C. Schatz, J. Chem. Phys. 121, 12606 (2004)

    Article  ADS  Google Scholar 

  19. E.M. Hicks, S.L. Zou, G.C. Schatz, K.G. Spears, R.P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, M. Kall, Nano Lett. 5, 1065 (2005)

    Article  ADS  Google Scholar 

  20. S.W. Gao, Z. Yuan, Phys. Rev. B 72, 121406 (2005)

    Article  ADS  Google Scholar 

  21. J.N. Crain, D.T. Pierce, Science 307, 703 (2005)

    Article  ADS  Google Scholar 

  22. S.L. Zou, G.C. Schatz, Nanotechnology 17, 2813 (2006)

    Article  ADS  Google Scholar 

  23. J. Yan, S.W. Gao, Phys. Rev. B 78, 216602 (2008)

    Google Scholar 

  24. J. Yan, Z. Yuan, S.W. Gao, Phys. Rev. Lett. 98, 235413 (2007)

    Google Scholar 

  25. D.C. Guhr, D. Rettinger, J. Boneberg, A. Erbe, P. Leiderer, E. Scheer, Phys. Rev. Lett. 99, 086801 (2007)

    Article  ADS  Google Scholar 

  26. E. Simsek, Plasmonics 4, 223 (2009)

    Article  Google Scholar 

  27. K.Y. Lian, P. Salek, M.X. Jin, D.J. Ding, J. Chem. Phys. 130, 174701 (2009)

    Article  ADS  Google Scholar 

  28. D.D. Liu, H. Zhang, Chin. Phys. B 20, 097105 (2011)

    Article  ADS  Google Scholar 

  29. N. Nayyar, V. Turkowski, T.S. Rahman, Phys. Rev. Lett. 109, 157404 (2012)

    Article  ADS  Google Scholar 

  30. S. Bernadotte, F. Evers, C.R. Jacob, J. Phys. Chem. C 117, 1863 (2013)

    Article  Google Scholar 

  31. G. Barcaro, M. Broyer, N. Durante, A. Fortunelli, M. Stener, J. Phys. Chem. C 115, 24085 (2011)

    Article  Google Scholar 

  32. N. Nilius, T.M. Wallis, W. Ho, Appl. Phys. A 80, 951 (2005)

    Article  ADS  Google Scholar 

  33. B. Delley, J. Phys. Condens. Matter 22, 384208 (2010)

    Article  ADS  Google Scholar 

  34. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  35. F. Chen, R.L. Johnston, Acta Mater. 56, 2374 (2008)

    Article  Google Scholar 

  36. F.Y. Chen, R.L. Johnston, Appl. Phys. Lett. 90, 153123 (2007)

    Article  ADS  Google Scholar 

  37. W.Q. Ma, F.Y. Chen, J. Alloys Compd. 541, 79 (2012)

    Article  Google Scholar 

  38. Y. Rao, Y.M. Lei, X.Y. Cui, Z.W. Liu, F.Y. Chen, J. Alloys Compd. 55, 50 (2013)

    Article  Google Scholar 

  39. W.Y. Li, F.Y. Chen, J. Nanopart. Res. 15, 1089 (2013)

    Google Scholar 

  40. P.S. Bechthold, U. Kettler, W. Krasser, Surf. Sci. 156, 875 (1985)

    Article  ADS  Google Scholar 

  41. S. Fedrigo, W. Harbich, J. Buttet, Phys. Rev. B 47, 10706 (1993)

    Article  ADS  Google Scholar 

  42. J.C. Idrobo, S. Ogut, J. Jellinek, Phys. Rev. B 72, 085445 (2005)

    Article  ADS  Google Scholar 

  43. S. Ogut, J.C. Idrobo, J. Jellinek, J.L. Wang, J. Clust. Sci. 17, 609 (2006)

    Article  Google Scholar 

  44. M.L. Tiago, J.C. Idrobo, S. Ogut, J. Jellinek, J.R. Chelikowsky, Phys. Rev. B 79, 155429 (2009)

    Article  ADS  Google Scholar 

  45. K. Yabana, G.F. Bertsch, Phys. Rev. A 60, 3809 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 51271148 and 50971100), the Research Fund of State Key Laboratory of Solidification Processing in China (Grant No. 30-TP-2009), and the Aeronautic Science Foundation Program of China (Grant No. 2012ZF53073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyi Chen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOC 1.4 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Chen, F. Effect of transition metal (Fe, Cu, Ni, Rh)-doped small silver chains on optics of plasmon resonances. Appl. Phys. A 113, 543–548 (2013). https://doi.org/10.1007/s00339-013-7842-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7842-9

Keywords

Navigation