Skip to main content
Log in

Atomistic insights into milling mechanisms in an Fe–Y2O3 model alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This experimental study combined with first principles modeling focuses on the distribution and behavior of yttria in pure iron powder particles prepared by mechanical alloying. A profound verification of the mechanism during milling is still missing in literature. Atom probe tomography and X-ray photoelectron spectroscopy measurements directly after mechanical alloying revealed yttria dissolved in the iron matrix, which later rearranged in clusters. These findings are corroborated by ab initio calculations demonstrating that the formation energy for Y substitutional defect in bcc-Fe is significantly lower in the close neighborhood of vacancies. X-ray diffraction measurements revealed that mechanical alloying for at least 12 hours caused a dramatic decrease in domain size and an extraordinary increase of defect density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Ukai, T. Nishida, T. Okuda, T. Yoshitake, J. Mater. Sci. Technol. 35, 294 (1998)

    Google Scholar 

  2. A. Czyrska-Filemonowicz, B. Dubiel, J. Mater. Process. Technol. 64, 53 (1997)

    Article  Google Scholar 

  3. J.S. Benjamin, T.E. Volin, Metall. Trans. 5, 1929 (1974)

    Article  Google Scholar 

  4. G. Odette, M. Alinger, B. Wirth, Annu. Rev. Mater. Res. 38, 471 (2008). doi:10.1146/annurev.matsci.38.060407.130315

    Article  ADS  Google Scholar 

  5. R.F. Domagala, J.J. Rausch, D. Levinson, Trans. Am. Soc. Met. 53, 137 (1961)

    Google Scholar 

  6. W. Zhang, G. Liu, K. Han, Phase Diagrams of Binary Iron Alloys (ASM International, Materials Park, 1993)

    Google Scholar 

  7. C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001). doi:10.1016/S0079-6425(99)00010-9

    Article  Google Scholar 

  8. J. Benjamin, Metall. Trans. 1, 2943 (1970)

    Google Scholar 

  9. R. Benn, P. Mirchandani, in Dispersion Strengthening by Mechanical Alloying, ed. by E. Arzt, L. Schultz (DGM Informationsgesellschaft, Oberursel, 1988), pp. 19–38

    Google Scholar 

  10. J.D. Whittenberger, in New Materials by Mechanical Alloying Techniques, ed. by E. Arzt, L. Schultz (DGM Informationsgesellschaft, Oberursel, 1988), pp. 201–215

    Google Scholar 

  11. M.K. Miller, K.F. Russell, D.T. Hoelzer, J. Nucl. Mater. 351, 261 (2006). doi:10.1016/j.jnucmat.2006.02.004

    Article  ADS  Google Scholar 

  12. I.S. Kim, J.D. Hunn, N. Hashimoto, D.L. Larson, P.J. Maziasz, K. Miyahara, E.H. Lee, J. Nucl. Mater. 280, 264 (2000). doi:10.1016/S0022-3115(00)00066-0

    Article  ADS  Google Scholar 

  13. D. Larson, Scr. Mater. 44, 359 (2001). doi:10.1016/S1359-6462(00)00593-5

    Article  Google Scholar 

  14. M. Miller, D. Hoelzer, E. Kenik, K. Russell, J. Nucl. Mater. 329–333, 338 (2004). doi:10.1016/j.jnucmat.2004.04.085

    Article  Google Scholar 

  15. M. Miller, E. Kenik, K. Russell, L. Heatherly, D. Hoelzer, P. Maziasz, Mater. Sci. Eng. A 353, 140 (2003). doi:10.1016/S0921-5093(02)00680-9

    Article  Google Scholar 

  16. M. Miller, D. Hoelzer, E. Kenik, K. Russell, Intermetallics 13, 387 (2005). doi:10.1016/j.intermet.2004.07.036

    Article  Google Scholar 

  17. C.A. Williams, P. Unifantowicz, N. Baluc, G.D. Smith, E.A. Marquis, Acta Mater. 61, 2219 (2013). doi:10.1016/j.actamat.2012.12.042

    Article  Google Scholar 

  18. T. Okuda, M. Fujiwara, J. Mater. Sci. Lett. 14, 1600 (1995). doi:10.1007/BF00455428

    Article  Google Scholar 

  19. Y. Kimura, S. Suejima, H. Goto, S. Takaki, ISIJ Int. 40, 174 (2000). doi:10.2355/isijinternational.40.Suppl_S174

    Article  Google Scholar 

  20. Y. Kimura, S. Takaki, S. Suejima, R. Uemor, H. Tamehiro, ISIJ Int. 39, 176 (1999)

    Article  Google Scholar 

  21. M. Klimiankou, R. Lindau, A. Möslang, J. Cryst. Growth 249, 381 (2003). doi:10.1016/S0022-0248(02)02134-6

    Article  ADS  Google Scholar 

  22. C. Fu, M. Krčmar, G. Painter, X.Q. Chen, Phys. Rev. Lett. 99, 1 (2007). doi:10.1103/PhysRevLett.99.225502

    Google Scholar 

  23. T.H. de Keijser, J.I. Langford, E.J. Mittemeijer, A.B.P. Vogels, J. Appl. Crystallogr. 15, 308 (1982). doi:10.1107/S0021889882012035

    Article  Google Scholar 

  24. P. Dasgupta, Fizika A 9, 61 (2000). doi:10.1177/097152150401100101

    ADS  Google Scholar 

  25. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  26. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  27. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  28. A. Cerezo, L. Davin, Surf. Interface Anal. 39, 184 (2007). doi:10.1002/sia.2486

    Article  Google Scholar 

  29. L.T. Stephenson, M.P. Moody, P.V. Liddicoat, S.P. Ringer, Microsc. Microanal. 13(6), 448 (2007). doi:10.1017/S1431927607070900

    Article  Google Scholar 

  30. D. Vaumousse, A. Cerezo, P.J. Warren, Ultramicroscopy 95, 215 (2003)

    Article  Google Scholar 

  31. D. Briggs, M. Seah, Practical Surface Analysis, 2nd edn. (Willey, New York, 1993)

    Google Scholar 

  32. R. Hesse, P. Streubel, R. Szargan, Surf. Interface Anal. 39, 381 (2007). doi:10.1002/sia.2527

    Article  Google Scholar 

  33. J.C. Fuggle, J.E. Inglesfield (eds.), Unoccupied Electronic States—Fundamentals for XANES, EELS, IPS and BIS—Introduction (Springer, Berlin, 1992)

    Google Scholar 

  34. Y. Jiang, J. Smith, G. Odette, Phys. Rev. B 79, 064103 (2009). doi:10.1103/PhysRevB.79.064103

    Article  ADS  Google Scholar 

  35. J.H. Swisher, E.T. Turkdogan, Trans. Metall. Soc. AIME 239, 426 (1967)

    Google Scholar 

  36. M. Klimiankou, J. Nucl. Mater. 329–333, 347 (2004). doi:10.1016/j.jnucmat.2004.04.083

    Article  Google Scholar 

  37. S. Yamashita, S. Ohtsuka, N. Akasaka, S. Ukai, S. Ohnuki, Philos. Mag. Lett. 84, 525 (2004). doi:10.1080/09500830412331303609

    Article  ADS  Google Scholar 

  38. A. Somoza, M. Petkov, K. Lynn, A. Dupasquier, Phys. Rev. B 65, 094107 (2002). doi:10.1103/PhysRevB.65.094107

    Article  ADS  Google Scholar 

  39. R. Schwarz, Mater. Sci. Forum 269–272, 665 (1998)

    Article  Google Scholar 

  40. A. Gopejenko, Nanodevices and Nanomaterials for Ecological Security (Springer, Berlin, 2012)

    Google Scholar 

  41. R. Schwarz, C. Koch, Appl. Phys. Lett. 49, 164 (1986)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank Dr. Johannes Zbiral for supporting at the milling process and TU Wien using its facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ressel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ressel, G., Holec, D., Fian, A. et al. Atomistic insights into milling mechanisms in an Fe–Y2O3 model alloy. Appl. Phys. A 115, 851–858 (2014). https://doi.org/10.1007/s00339-013-7877-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7877-y

Keywords

Navigation