Skip to main content
Log in

Study of Na substitution in La0.67Ba0.33MnO3 perovskites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of Na substitution on nominal La0.67Ba0.33−x Na x MnO3 (0≤x≤0.33) manganites is studied in this work. Detailed chemical and structural analyses on ceramic samples obtained at 1200 C show that a significantly lower Na rate than the nominal one is obtained due to important Na losses during the synthesis. The losses of Na result in the appearance of impurity phases for high nominal Na rates in addition to the manganite phase with a rhombohedral \(R\bar{3}c\) structure. Structural and physical properties of the samples can be properly interpreted according to the variation of the Mn3+/Mn4+ ratio and the average ionic radius of A-site when the experimental composition of the manganite is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. \(\mu_{s}^{\mathrm{cal}} (\mu_{B}/f.u.)= 2\mu_{B}[c_{\mathrm{Mn}^{3+}}\times \frac{4}{2}+c_{\mathrm{Mn}^{4+}}\times \frac{3}{2}]\), the \(\mu_{s}^{\mathrm{cal}}\) values have been obtained assuming a quenched orbital moment, with spin moment, S=2 for Mn3+, S=3/2 for Mn4+ and g=2 for both Mn3+ and Mn4+.

References

  1. M.B. Salomon, M. Jaime, Rev. Mod. Phys. 73, 583 (2001)

    Article  ADS  Google Scholar 

  2. S. Das, T.K. Dey, Mater. Chem. Phys. 108, 220–226 (2008)

    Article  Google Scholar 

  3. O.Z. Yanchevskii, A.I. Tovstolytkin, O.I. V’yunov, A.G. Belous, Inorg. Mater. 44, 181–188 (2008)

    Article  Google Scholar 

  4. O.Z. Yanchevskii, A.I. Tovstolytkin, O.I. V’yunov, D.A. Durilin, A.G. Belous, Inorg. Mater. 40, 744–750 (2004)

    Article  Google Scholar 

  5. Y. Kalyana Lakshmi, P. Venugopal Reddy, J. Alloys Compd. 470, 67–74 (2009)

    Article  Google Scholar 

  6. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969). Rodriguez-Carvajal, FULLPROF, LLB Saclay, France, 2001

    Article  Google Scholar 

  7. V. Rives, M. Del Arco, O. Prieto, Departamento de Química Inorgánica, Universidad de Salamanca, Salamanca, España. Boletin de la Sosiedad Espanola de Cerámica y Vidrio

  8. D. Anderson, G. Sá Rodrigo, C. Spitale Matheus, A. Maycon, S.T. Ciminelli Virgínia, Mater. Res. Bull. 43, 1528–1538 (2008)

    Article  Google Scholar 

  9. M. Sahana, R.N. Singh, C. Shivakumara, N.Y. Vassanthacharya, M.S. Hegde, S. Subramanian, V. Prasad, S.V. Subramanyam, Appl. Phys. Lett. 70, 2909 (1997)

    Article  ADS  Google Scholar 

  10. S.L. Ye, W.H. Song, J.M. Dai, K.Y. Wang, S.G. Wang, J.J. Du, J. Appl. Phys. 90, 2943 (2001)

    Article  ADS  Google Scholar 

  11. E. Fertman, C. Ritter, A. Beznosov, V. Desnenko, D. Khalyavin, Physica B 350, 227 (2004)

    Article  ADS  Google Scholar 

  12. P.G. Radaelli, G. Iannone, M. Marezio, H.Y. Hwang, S.-W. Cheong, J.D. Jorgensenand, D.N. Argyriou, Phys. Rev. B 56, 8265–8276 (1997)

    Article  ADS  Google Scholar 

  13. M. Koubaa, W. Cheikh-Rouhou Koubaa, A. Cheikhrouhou, J. Magn. Magn. Mater. 321, 3578–3584 (2009)

    Article  ADS  Google Scholar 

  14. M. Koubaa, W. Cheikh-Rouhou Koubaa, A. Cheikhrouhou, J. Alloys Compd. 479, 65–70 (2009)

    Article  Google Scholar 

  15. R. Niwas Singh, C. Shivakumara, N.Y. Vasanthacharya, S. Subramanian, M.S. Hegde, H. Rajagopal, A. Sequeira, J. Solid State Chem. 137, 19–27 (1998)

    Article  ADS  Google Scholar 

  16. C. Shivakumara, M.B. Bellakki, A.S. Prakash, N.Y. Vasanthacharya, J. Am. Ceram. Soc. 90, 3852–3858 (2007)

    Google Scholar 

  17. T. Shimura, T. Hayashi, Y. Inaguma, M. Itoh, J. Solid State Chem. 124, 250–263 (1996)

    Article  ADS  Google Scholar 

  18. A.I. Tovstolytkin, A.M. Pogorily, D.I. Podyalovskii, V.M. Kalita, A.F. Lozenko, P.O. Trotsenko, S.M. Ryabchenko, A.G. Belous, O.I. V’yunov, O.Z. Yanchevskii, J. Appl. Phys. 102, 063902 (2007)

    Article  ADS  Google Scholar 

  19. R.D. Shannon, Acta Crystallogr. A 32, 751–764 (1976)

    Article  ADS  Google Scholar 

  20. V.M. Goldschmit, Geochemische Verteilungsgesetz der element 7, 8 (1927–1928)

    Google Scholar 

  21. T. Boix, F. Sapiña, Z. El-Fadli, E. Martínez, A.J. Vergara, R.J. Ortega Beltrán, K.V. Rao, Chem. Mater. 10(6), 1569–1575 (1998)

    Article  Google Scholar 

  22. J. Vergara, R.J. Ortega-Hertogs, V. Madurga, F. Sapiña, Z. El-Fadli, E. Martínez, A. Beltrán, K.V. Rao, Phys. Rev. B 60(2), 1127–1135 (1999)

    Article  ADS  Google Scholar 

  23. W.H. McCarroll, I.D. Fawcett, M. Greenblatt, K.V. Ramanujachary, J. Solid State Chem. 146, 88–95 (1999)

    Article  ADS  Google Scholar 

  24. K. Dwight, N. Menyux, Phys. Rev. 119, 1470–1479 (1960)

    Article  ADS  Google Scholar 

  25. S. Zemni, A. Gasmi, M. Boudard, M. Oumezzine, Mater. Sci. Eng. B 144, 117 (2007)

    Article  Google Scholar 

  26. L.E. Hueso, F. Rivadulla, R.D. Sánchez, D. Caeiro, C. Jardón, C. Vázquez-Vázquez, J. Rivas, M.A. López-Quintela, J. Magn. Magn. Mater. 189, 321–328 (1998)

    Article  ADS  Google Scholar 

  27. C. Shivakumara, M.B. Bellakki, A.S. Prakash, Nagsampagi, Y. Vasanthacharya, J. Am. Ceram. Soc. 90, 3852–3858 (2007)

    Google Scholar 

  28. S.L. Yuan, Z.Y. Li, G. Peng, C.S. Xiong, Y.H. Xiong, C.Q. Tang, Appl. Phys. Lett. 79, 90 (2001)

    Article  ADS  Google Scholar 

  29. A.G. Gamzatov, A.B. Batdalov, A.R. Kaul, O.V. Melnikov, Phys. Solid State 53, 182 (2011)

    Article  ADS  Google Scholar 

  30. M. Khlifi, M. Bejar, E. Dhahri, P. Lachkar, E.K. Hlil, J. Appl. Phys. 111, 103909 (2012)

    Article  ADS  Google Scholar 

  31. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Phys. Rev. B 51, 14103 (1995)

    Article  ADS  Google Scholar 

  32. M. Viret, L. Ranno, J.M.D. Coey, Phys. Rev. B 55, 8067 (1997)

    Article  ADS  Google Scholar 

  33. G. Venkataiah, P. Venugopal Reddy, Solid State Commun. 136, 114 (2005)

    Article  ADS  Google Scholar 

  34. T.D. Thanh, L.H. Nguyen, D.H. Manh, N.V. Chien, P.T. Phong, N.V. Khiem, L.V. Hong, N.X. Phuc, Physica B 407, 145–152 (2012)

    Article  ADS  Google Scholar 

  35. S. Das, T.K. Dey, J. Magn. Magn. Mater. 294, 338–346 (2005)

    Article  ADS  Google Scholar 

  36. S. Das, T.K. Dey, Solid State Commun. 134, 837–842 (2005)

    Article  ADS  Google Scholar 

  37. S. Das, T.K. Dey, Physica B 381, 280–288 (2006)

    Article  ADS  Google Scholar 

  38. M. Kar, S. Ravi, Mater. Sci. Eng. 110, 46–51 (2004)

    Article  Google Scholar 

  39. E. Rozenberg, J. Appl. Phys. 101, 036105 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hcini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hcini, S., Boudard, M. & Zemni, S. Study of Na substitution in La0.67Ba0.33MnO3 perovskites. Appl. Phys. A 115, 985–996 (2014). https://doi.org/10.1007/s00339-013-7919-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7919-5

Keywords

Navigation