Skip to main content
Log in

Oxygen pressure induced structure, morphology and phase-transition for VO2/c-sapphire films by PLD

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To investigate the effects of oxygen pressure on the structural and phase transition properties for VO2/c-sapphire, highly orientated VO2 thin films were grown on (0001) sapphire substrates by pulsed laser deposition (PLD) with different oxygen pressures. The crystal structure, morphology and component of the films were systematically investigated. The temperature-dependent resistance (R-T) measurement was conducted, which showed the distinct phase transition characteristic for the prepared films. The results indicate that the oxygen pressure plays an important role for the VO2 film preparation. The film grown at 1.7 Pa has lower phase transition temperature, higher film strain, and smaller grain size than that at 5.4 Pa, while no obvious crystal phase transition is observed. The experiment suggests that even a small change in oxygen pressure can influence the structure, morphology and phase-transition behavior of VO2 films obviously, and its potential causes are mainly attributed to the reduction of the kinetic energy to the substrate for target atoms caused by the oxygen pressure, the resulting grain aggregation and interfacial stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F.J. Morin, Phys. Rev. Lett. 3, 34–36 (1959)

    Article  ADS  Google Scholar 

  2. C.H. Griffith, H.K. Eastwood, J. Appl. Phys. 45, 2201–2206 (1974)

    Article  ADS  Google Scholar 

  3. M. Fukuma, S. Zembutsu, S. Miyazawa, Appl. Opt. 22, 265–268 (1983)

    Article  ADS  Google Scholar 

  4. E.E. Chain, J. Vac. Sci. Technol. A 4, 432–435 (1986)

    Article  ADS  Google Scholar 

  5. A. Razavi, L. Bobyak, P. Fallon, J. Vac. Sci. Technol. A 8, 1391–1394 (1990)

    Article  ADS  Google Scholar 

  6. K.L. Holman, T.M. McQueen, A.J. Williams, T. Klimczuk, P.W. Stephens, H.W. Zandbergen, Q. Xu, F. Ronning, R.J. Cava, Phys. Rev. B 79, 8 (2009)

    Article  Google Scholar 

  7. T.D. Manning, I.P. Parkin, M.E. Pemble, D. Sheel, D. Vernardou, Chem. Mater. 16, 744–749 (2004)

    Article  Google Scholar 

  8. T. Kikuzuki, M. Lippmaa, Appl. Phys. Lett. 96, 3 (2010)

    Article  Google Scholar 

  9. F.C. Case, J. Vac, Sci. Technol. A 2, 1509–1512 (1984)

    ADS  Google Scholar 

  10. R. Lopez, T.E. Haynes, L.A. Boatner, L.C. Feldman, R.F. Haglund, Phys. Rev. B 65, 5 (2002)

    Article  Google Scholar 

  11. L.L. Fan, Y.F. Wu, C. Si, C.W. Zou, Z.M. Qi, L.B. Li, G.Q. Pan, Z.Y. Wu, Thin Solid Films 520, 6124–6129 (2012)

    Article  ADS  Google Scholar 

  12. B.G. Chae, H.T. Kim, S.J. Yun, B.J. Kim, Y.W. Lee, D.H. Youn, K.Y. Kang, Electrochem. Solid-State Lett. 9, C12–C14 (2006)

    Article  Google Scholar 

  13. D. Vernardou, M.E. Pemble, D.W. Sheel, Surf. Coat. Technol. 188, 250–254 (2004)

    Article  Google Scholar 

  14. X.J. Wang, H.D. Li, Y.J. Fei, X. Wang, Y.Y. Xiong, Y.X. Nie, K.A. Feng, Appl. Surf. Sci. 177, 8–14 (2001)

    Article  ADS  Google Scholar 

  15. Z.P. Wu, S. Yamamoto, A. Miyashita, Z.J. Zhang, K. Narumi, H. Naramoto, J. Phys. Condens. Mater. 10, L765–L771 (1998)

    Article  ADS  Google Scholar 

  16. T.H. Yang, S. Nori, H.H. Zhou, J. Narayan, Appl. Phys. Lett. 95, 3 (2009)

    Google Scholar 

  17. Y. Muraoka, Z. Hiroi, Appl. Phys. Lett. 80, 583–585 (2002)

    Article  ADS  Google Scholar 

  18. J.Y. Suh, R. Lopez, L.C. Feldman, R.F. Haglund, J. Appl. Phys. 96, 1209–1213 (2004)

    Article  ADS  Google Scholar 

  19. K. Nagashima, T. Yanagida, H. Tanaka, T. Kawai, Phys. Rev. B 74, 4 (2006)

    Article  Google Scholar 

  20. A. Kaushal, N. Choudhary, N. Kaur, D. Kaur, Appl. Surf. Sci. 257, 8937–8944 (2011)

    Article  ADS  Google Scholar 

  21. B. Chen, D.F. Yang, P.A. Charpentier, M. Zeman, Sol. Energy Mater. Sol. Cells 93, 1550–1554 (2009)

    Article  Google Scholar 

  22. K. Nagashima, T. Yanagida, H. Tanaka, T. Kawai, J. Appl. Phys. 100, 4 (2006)

    Article  Google Scholar 

  23. A. Gupta, J. Narayan, T. Dutta, Appl. Phys. Lett. 97, 3 (2010)

    Google Scholar 

  24. J. Nag, E.A. Payzant, K.L. More, R.F. Haglund Jr., Appl. Phys. Lett. 98, 3 (2011)

    Article  Google Scholar 

  25. K. Kato, P.K. Song, H. Odaka, Y. Shigesato, Jpn. J. Appl. Phys. 42, 6523–6531 (2003)

    Article  ADS  Google Scholar 

  26. T.H. Yang, C.M. Jin, R. Aggarwal, R.J. Narayan, J. Narayan, J. Mater. Res. 25, 422–426 (2010)

    Article  ADS  Google Scholar 

  27. P. Mandal, A. Speck, C. Ko, S. Ramanathan, Opt. Lett. 36, 3 (2011)

    Google Scholar 

  28. G.J. Kovacs, D. Buerger, I. Skorupa, H. Reuther, R. Heller, H. Schmidt, J. Appl. Phys. 109, 5 (2011)

    Google Scholar 

  29. H. Koo, S. Yoon, O.J. Kwon, K.E. Ko, D. Shin, S.H. Bae, S.H. Chang, C. Park, J. Mater. Sci. 47, 6397–6401 (2012)

    Article  ADS  Google Scholar 

  30. Y. Muraoka, Y. Ueda, Z. Hiroi, J. Phys. Chem. Solids 63, 965–967 (2002)

    Article  ADS  Google Scholar 

  31. G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse, J. Electron Spectrosc. 135, 167–175 (2004)

    Article  Google Scholar 

  32. C. Blauw, F. Lechnhouts, F. Van der Woude, G.A. Sawatzki, J. Phys. C 8, 10 (1975)

    Article  Google Scholar 

  33. T.D. Manning, I.P. Parkin, J. Mater. Chem. 14, 2554–2559 (2004)

    Article  Google Scholar 

  34. R. Lindstrom, V. Maurice, S. Zanna, L. Klein, H. Groult, L. Perrigaud, C. Cohen, P. Marcus, Surf. Interface Anal. 38, 6–18 (2006)

    Article  Google Scholar 

  35. http://www.phy.cuhk.edu.hk/~surface/XPSPEAK/

  36. N. Alov, D. Kutsko, I. Spirovova, Z. Bastl, Surf. Sci. 600, 1628–1631 (2006)

    Article  ADS  Google Scholar 

  37. A. Zylbersztejn, N.F. Mott, Phys. Rev. B 11, 4383–4395 (1975)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Shao Tao and Dr. Fan Lele for their help in preparing and measuring samples, respectively. This work was supported by the National Natural Science Foundation of China (11175183, 21271007), Post-doctoral Research Start-up Funding of Anhui Jianzhu University (K02553), and Open Project of Building Energy Conservation Institute of Anhui Jianzhu University (K02592).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y.X., Liu, Y.F., Zou, C.W. et al. Oxygen pressure induced structure, morphology and phase-transition for VO2/c-sapphire films by PLD. Appl. Phys. A 115, 1245–1250 (2014). https://doi.org/10.1007/s00339-013-7972-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7972-0

Keywords

Navigation