Skip to main content
Log in

Optical, structural, enhanced local vibrational and fluorescence properties in K-doped ZnO nanostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We studied structural, optical and vibrational properties of K-doped ZnO nanostructures. X-ray diffraction studies reveal that the prepared particles are hexagonal wurtzite in structure. Increase in lattice parameters and unit cell volume is observed after K doping. Dopant influences on stress, strain of the system are studied using W–H plots. Band gap variation by doping of K is identified from optical absorption studies. Photoluminescence studies have given insight into the enhancement in blue emission observed by K doping along with the near band emission of nano ZnO. From Fourier transform infrared spectral measurements, K-related local vibration mode is observed along with the information related to influence of doping on characteristic vibrational modes of ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Sapra, D.D. Sarma, Phys Rev B 69, 125304 (2004)

    Article  ADS  Google Scholar 

  2. S.H. Tolbert, A.B. Herhold, C.S. Johnson, A.P. Alivisatos, Phys Rev Lett 73, 3266 (1994)

    Article  ADS  Google Scholar 

  3. X. Wang, C.J. Summers, Z.L. Wang, Nano Lett 4, 423 (2004)

    Article  ADS  Google Scholar 

  4. J.X. Wang, X.W. Sun, Y. Yang, H. Huang, Y.C. Lee, O.K. Tan, L. Vayssieres, Nanotechnology 17, 4995 (2006)

    Article  ADS  Google Scholar 

  5. S.J. Pearton, D.P. Norton, F. Ren, Small 3, 1144 (2007)

    Article  Google Scholar 

  6. J. Zhao, L. Wang, X. Yan, Mater Res Bull 46, 1207 (2011)

    Article  Google Scholar 

  7. S. Khatoon, I.A. Wani, J. Ahmed, T. Magdaleno, A. Omar, Al-Hartomy, T. Ahmad, Mater Chem Phys 138, 519 (2013)

    Article  Google Scholar 

  8. Y.L. Zhang, Y. Yang, J.H. Zhao, R.Q. Tan, P. Cui, W.J. Song, J Sol-Gel Sci Technol 51, 198 (2009)

    Article  Google Scholar 

  9. K.-F. Lin, H.-M. Cheng, H.-C. Hsu, L.-J. Lin, W.-F. Hsieh, Chem Phys Lett 409, 208 (2005)

    Article  ADS  Google Scholar 

  10. N.V. Tuyen, N.N. Long, T.D. Canh, J Surf Sci Nanotech 9, 472 (2011)

    Article  Google Scholar 

  11. A. KhorsandZak, M.E. Abrishami, W.H. AbdMajid, R. Yousefi, S.M. Hosseini, Ceram Int 37, 393 (2011)

    Article  Google Scholar 

  12. H. Ahn, Y. Wang, S.H. Jee, M. park, Y.S. Yoon, D.J. Kim, Chem Phys Lett 511, 331 (2011)

    Article  ADS  Google Scholar 

  13. A.K. Zak, W.H. Majid, H.Z. Wang, R. Yousefi, A.M. Golsheikh, Z.F. Ren, Ultrason Sonochem 20, 395 (2013)

    Article  Google Scholar 

  14. H. Zeng, W. Cai, Y. Li, J. Hu, P. Liu, J. Phy, Chem B 109, 18260 (2005)

    Article  Google Scholar 

  15. S.K. Kim, S.A. Kim, C.H. Lee, H.J. Lee, S.Y. Jeong, C.R. Cho, Appl Phys Lett 85, 419 (2004)

    Article  ADS  Google Scholar 

  16. B.D. Yuhas, D.O. Zitoun, P.J. Pauzauskie, R. He, P. Yang, Angew Chem Int Ed 45, 420 (2006)

    Article  Google Scholar 

  17. C. Ronning, P.X. Gao, Y. Ding, Z.L. Wang, D. Schwen, Appl Phys Lett 84, 783 (2004)

    Article  ADS  Google Scholar 

  18. Y. Yan, M.M.A. Jassim, S.H. Wei, Appl Phys Lett 89, 181912 (2006)

    Article  ADS  Google Scholar 

  19. G.Y. Huang, C.Y. Wang, J.T. Wang, Phys B 405, 158 (2010)

    Article  ADS  Google Scholar 

  20. J. Wu, Y. Yang, Mater Lett 62, 1899 (2008)

    Article  Google Scholar 

  21. C.B. Tay, S.J. Chua, K.P. Loh, J Phys Chem C 114, 9981 (2010)

    Article  Google Scholar 

  22. L. Xu, F. Gu, J. Su, Y. Chen, X. Li, X. Wang, J Alloys Compd 509, 2942 (2011)

    Article  Google Scholar 

  23. S. Ghosh, G.G. Khan, B. Das, K. Mandal, J Appl Phys 109, 123927 (2011)

    Article  ADS  Google Scholar 

  24. C. Suryanarayana, M. GrantNorton, X-ray diffraction: a practical approach (Plenum, New York, 1998), p. 213

    Book  Google Scholar 

  25. V.D. Mote, Y. Purushotham, B.N. Dole, J Theor Appl Phys 6, 6 (2012)

    Article  Google Scholar 

  26. M.K. Gupta, N. Sinha, B. Kumar, J Appl Phys 109, 083532 (2011)

    Article  ADS  Google Scholar 

  27. H.M. Xiong, D.G. Shchukin, H. Mhwald, Y. Xu, Y. Xia, Angew Chem Int Ed 48, 2727 (2009)

    Article  Google Scholar 

  28. S. Labuayai, V. Promarak, S. Maensiri, Appl Phys A 94, 755 (2009)

    Article  ADS  Google Scholar 

  29. B. Cheng, Y. Xiao, G. Wu, L. Zhang, Appl Phys Lett 84, 416 (2004)

    Article  ADS  Google Scholar 

  30. M. Ghosh, N. Dilawar, A.K. Bandyopadhyay, A.K. Raychaudhuri, J Appl Phys 106, 084306 (2009)

    Article  ADS  Google Scholar 

  31. T. Pandiyarajan, B. Karthikeyan, J Nanopart Res 14, 647 (2012)

    Article  Google Scholar 

  32. T. Pandiyarajan, R. Udayabhaskar, B. Karthikeyan, Appl Phys A 107, 411 (2012)

    Article  ADS  Google Scholar 

  33. A.I. Belogorokhov, A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, E.A. Kozhukhova, H.S. Kim, D.P. Norton, S.J. Pearton, Appl Phys Lett 90, 192110 (2007)

    Article  ADS  Google Scholar 

  34. P.V.B. Lakshmi, K. Ramachandran, Int J Thermophys 28, 1353 (2007)

    Article  ADS  Google Scholar 

  35. M.D. McCluskey, J Appl Phys 87, 3593 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Udayabhaskar or B. Karthikeyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bharathi, V., Sivakumar, M., Udayabhaskar, R. et al. Optical, structural, enhanced local vibrational and fluorescence properties in K-doped ZnO nanostructures. Appl. Phys. A 116, 395–401 (2014). https://doi.org/10.1007/s00339-013-8139-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8139-8

Keywords

Navigation