Skip to main content
Log in

Hydrothermal synthesis of MnO2 nanowires: structural characterizations, optical and magnetic properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, 1D single-crystalline MnO2 nanowires have been successfully synthesized by hydrothermal method using KMnO4 and (NH4)2S2O8 as raw materials. X-ray diffraction patterns and high-resolution TEM images reveal pure tetragonal MnO2 phase with diameters of 15–20 nm. Photoluminescence studies exhibited a strong ultraviolet (UV) emission band at 380 nm, blue emission at 452 nm and an extra weak defect-related green emission at 542 nm. UV–visible spectrophotometery was used to determine the absorption behavior of nanostructured MnO2 and a direct optical band gap of 2.5 eV was acquired by Davis–Mott model. The magnetic properties of the products have been evaluated using vibrating sample magnetometer, which showed that MnO2 nanowires exhibited a superparamagnetic behavior at room temperature. The magnetization versus temperature curve of the as-obtained MnO2 nanowires shows that antiferromagnetic transition temperature is 99 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. Li, J. Wang, Y. Zhang, M.N. Banis, J. Liu, D. Geng, X. Sun, J. Colloid Interface Sci. 369, 123–128 (2012)

    Article  Google Scholar 

  2. G. Zou, H. Li, Y. Zhang, K. Xiong, Y. Qian, Nanotechnology 17, 313 (2006)

    Article  ADS  Google Scholar 

  3. S. Jana, S. Pande, A.K. Sinha, S. Sarkar, M. Pradhan, M. Basu, T. Pal, J. Phys. Chem. C 113, 1386–1392 (2009)

    Article  Google Scholar 

  4. S.C. Pang, S.F. Chin, C.Y. Ling, J. Nano Mater. 2, 607870 (2012)

    Google Scholar 

  5. Z. Pan, Li Xinyong, Z. Qidong, Li Shaomin, Nanoscale Res. Lett. 6, 323 (2011)

    Article  Google Scholar 

  6. A.M. Toufiq, F.P. Wang, Q.U.A. Javed, J. Nanosci. Nanotechnol. 13, 2948 (2013)

    Article  Google Scholar 

  7. B.A. Pinaud, Z. Chen, D.N. Abram, T.F. Jaramillo, J. Phys. Chem. C 115(23), 11830–11838 (2011)

    Article  Google Scholar 

  8. J.E. Greedan, N.P. Raju, A.S. Wills, C. Morin, S.M. Shaw, J.N. Reimers, Chem. Mater. 10(10), 3058–3067 (1998)

    Article  Google Scholar 

  9. H.J. Kim, J.B. Lee, Y.M. Kim, M.H. Jung, Z. Jaglicic, P. Umek, J. Dolinsek, Nanoscale Res. Lett. 2(2), 81–86 (2007)

    Article  ADS  Google Scholar 

  10. S. Jana, S. Basu, S. Pande, S.K. Ghosh, T. Pal, J. Phys. Chem. C 111, 16272–16277 (2007)

    Article  Google Scholar 

  11. C.M. Julien, M. Massot, C. Poinsignon, Spectrochimica Acta, Part A 60, 689–700 (2004)

    Article  ADS  Google Scholar 

  12. F. Cheng, J. Zhao, W. Song, C. Li, H. Ma, J. Chen, P. Shen, Inorg. Chem. 45, 2038–2044 (2006)

    Article  Google Scholar 

  13. Y. Yang, L. Xiao, Y. Zhao, F. Wang, Int. J. Electrochem. Sci. 3, 67–74 (2008)

    Google Scholar 

  14. X. Wang, Y. Li, J. Am. Chem. Soc. 124, 2880–2881 (2002)

    Article  Google Scholar 

  15. X. Wang, Y. Li, Chem. Eur. J. 9, 300–306 (2003)

    Article  Google Scholar 

  16. J.B. Yang, X.D. Zhou, W.J. James, S.K. Malik, C.S. Wang, Appl. Phys. Lett. 85, 3160–3162 (2004)

    Article  ADS  Google Scholar 

  17. B. Li, G. Rong, Y. Xie, L. Huang, C. Feng, Inorg. Chem. 45, 6404–6410 (2006)

    Article  Google Scholar 

  18. Y. Chen, C. Liu, F. Li, H.M. Cheng, J. Alloy Compd. 397, 282–285 (2005)

    Article  Google Scholar 

  19. G.H. Yue, P.X. Yan, D. Yan, D.M. Qu, X.Y. Fan, M.X. Wang, H.T. Shang, J. Cryst. Growth 294, 385–388 (2006)

    Article  ADS  Google Scholar 

  20. J.T. Sampanthar, J. Dou, G.G. Joo, E. Widjaja, L.Q.H. Eunice, Nanotechnology 18, 025601 (2007)

    Article  ADS  Google Scholar 

  21. H. Wang, Z. Lu, D. Qian, Y. Li, W. Zhang, Nanotechnology 18, 115616 (2007)

    Article  ADS  Google Scholar 

  22. X. Chen, X. Li, Y. Jiang, C. Shi, X. Li, Solid State Commun. 136, 94–96 (2005)

    Article  ADS  Google Scholar 

  23. J. Luo, H.T. Zhu, H.M. Fan, J.K. Liang, H.L. Shi, G.H. Rao, Z.X. Shen, J. Phys. Chem. C 112, 12594–12598 (2008)

    Article  Google Scholar 

  24. J.G. Zhao, J.Z. Yin, S.G. Yang, Mater. Res. Bull. 47, 896–900 (2012)

    Article  Google Scholar 

  25. M. Zhou, X. Zhang, J. Wei, S. Zhao, L. Wang, B. Feng, J. Phys. Chem. C 115, 1398–1402 (2010)

    Article  Google Scholar 

  26. Y.H. Pai, C.T. Tsai, Int. J. Hydrogen Energy 38, 4342–4350 (2013)

    Article  Google Scholar 

  27. L. Song, S. Zhang, X. Wu, Q. Wei, Chem. Eng. J. 187, 385–390 (2012)

    Article  Google Scholar 

  28. R. Kannan, K. Karunakaran, S. Vasanthkumar, Appl. Nanosci. 1, 197–203 (2011)

    Article  ADS  Google Scholar 

  29. S. Li, Z. Ma, L. Wang, J. Liu, Sci. China, Ser. B: Chem. 51(2), 179–185 (2008)

    Article  Google Scholar 

  30. P. Asogwa, J. Optoelectron. Biomed. Mater. 2, 109–117 (2010)

    Google Scholar 

  31. K.A.M. Ahmed, H. Peng, K. Wu, K. Huang, Chem. Eng. J. 172, 531–539 (2011)

    Article  Google Scholar 

  32. A.M. Toufiq, F.P. Wang, Q.U.A. Javed, Y. Li, Nanotechnology 24, 415703 (2013)

    Article  ADS  Google Scholar 

  33. N.A. Frey, S. Peng, K. Cheng, S. Sun, Chem. Soc. Rev. 38(9), 2532–2542 (2009)

    Article  Google Scholar 

  34. L. Ying, L. Yongfeng, W. Tianxing, J. Nanomater. 1-6 (2012)

  35. S. Hao-Ling, S. Hongtao, Z. Fei, Q. Limin, G. Song, Chem. Commun. 34, 4339–4341 (2005)

    Google Scholar 

  36. X.M. Liu, S.Y. Fu, C. Huang, J. Powder Technol. 154(2), 120–124 (2005)

    Article  Google Scholar 

  37. H.T. Zhu, J. Luo, H.X. Yang, J.K. Liang, G.H. Rao, J.B. Li, Z.M. Du, J. Phys. Chem. C 112, 17089–17094 (2008)

    Article  Google Scholar 

  38. J. Luo, H.T. Zhu, F. Zhang, J.K. Liang, G.H. Rao, J.B. Li, Z.M. Du, J. Appl. Phys. 105, 093925 (2009)

    Article  ADS  Google Scholar 

  39. J. Luo, H.T. Zhu, J.K. Liang, G.H. Rao, J.B. Li, Z.M. Du, J. Phys. Chem. C 114, 8782–8786 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the financial supports of National Key Scientific Instruments and Equipment Development Special Fund (2011YQ14014506 and 2011YQ14014507), the Oriented Award Foundation for Science and Technological Innovation, Inner Mongolia Autonomous Region, China (2012), University of Science and Technology Beijing (fundamental development fund and Chinese government scholarship program) and the Fundamental Research Funds for the Central Universities: FRF-BR-09-007A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toufiq, A.M., Wang, F., Javed, Qua. et al. Hydrothermal synthesis of MnO2 nanowires: structural characterizations, optical and magnetic properties. Appl. Phys. A 116, 1127–1132 (2014). https://doi.org/10.1007/s00339-013-8195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8195-0

Keywords

Navigation