Skip to main content
Log in

Different strategies for the synthesis of graphene/ZnO composite and its photocatalytic properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Owing to its unique physical and chemical properties, graphene has attracted tremendous attention in the preparation of graphene-based composites for various applications. In this study, two different strategies have been developed to load zinc oxide (ZnO) nanorods onto reduced graphene oxide (RGO) sheets, i.e., in situ growth and a self-assembly approach. The microstructure and morphology of the synthesized RGO/ZnO nanocomposites was investigated by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) and Brunauer–Emmett–Teller (BET) measurements. Fluorescence emission spectra (PL) of RGO/ZnO composites were performed to attribute quality of combination between RGO and ZnO. Significantly enhanced photocatalytic activity of RGO/ZnO nanocomposites in comparison to bare ZnO nanoparticles was revealed by the degradation of methylene blue under irradiation, which can be attributed to the inhibition of electron–hole pair recombination and enhanced adsorption due to the presence of RGO sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Appl. Catal. B: Environ. 31, 145 (2001)

    Google Scholar 

  2. I.K. Konstantinou, T.A. Albanis, Appl. Catal. B: Environ. 49, 1 (2004)

    Google Scholar 

  3. P.A. Pekakis, N.P. Xekoukoulotakis, D. Mantzavinos, Water Res. 40, 1276 (2006)

    Google Scholar 

  4. H. Kyung, J. Lee, W. Choi, Environ. Sci. Technol. 39, 2376 (2005)

    ADS  Google Scholar 

  5. B. Pall, M. Sharan, Mater. Chem. Phys. 76, 82 (2002)

    Google Scholar 

  6. S.B. Dhananjay, G.P. Vishwas, B. Anthony, J. Chem. Technol. Biotechnol. 77, 102 (2001)

    Google Scholar 

  7. L.S. Roselin, G.R. Rajarajeswarj, R. Selvin, V. Sadasivam, B. Sivasankar, K. Rengaraj, Sol. Energy 73, 281 (2002)

    ADS  Google Scholar 

  8. N. Daneshvar, D. Salari, A.R. Khataee, J. Photochem. Photobiol. A: Chem. 162, 317 (2004)

    Google Scholar 

  9. E. Yassitepe, H.C. Yatmaz, C. Ozturk, K. Ozturk, C. Duran, J. Photochem. Photobiol. A 198, 1 (2008)

    Google Scholar 

  10. Y.I. Zhigang, X.U. Xiaoling, D. Xing, Z. Wenjun, Z. Zuowan, F. Ximei, Rare Met. 30, 183 (2011)

    Google Scholar 

  11. X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Chem. Rev. 110, 6503 (2010)

    Google Scholar 

  12. J.C. Yu, J.G. Yu, W.K. Ho, Z.T. Jiang, L.Z. Zhang, Chem. Mater. 14, 3808 (2002)

    Google Scholar 

  13. Y.W. Cheng, R.C.Y. Chan, P.K. Wong, Water Res. 41, 842 (2007)

    Google Scholar 

  14. J.G. Yu, J.F. Xiong, B. Cheng, S.W. Liu, Appl. Catal. B 60, 211 (2005)

    Google Scholar 

  15. M. Ksibi, S. Rossignol, J.M. Tatibouet, C. Trapalis, Mater. Lett. 62, 4204 (2008)

    Google Scholar 

  16. Y. Guo, H. Wang, C. He, L. Qiu, X. Cao, Langmuir 25, 4678 (2009)

    Google Scholar 

  17. L.Q. Jiang, L. Gao, Mater. Chem. Phys. 91, 313 (2005)

    Google Scholar 

  18. X.Y. Zhang, H.P. Li, X.L. Cui, Y.H. Lin, J. Mater. Chem. 20, 2801 (2010)

    Google Scholar 

  19. O. Akhavan, ACS Nano 4, 4174 (2010)

    Google Scholar 

  20. A. Mukherji, B. Seger, G.Q. Lu, L.Z. Wang, ACS Nano 5, 3483 (2011)

    Google Scholar 

  21. A. Dato, V. Radmilovic, Z.H. Lee, J. Phillips, M. Frenklach, Nano Lett. 8, 2012 (2008)

    ADS  Google Scholar 

  22. A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)

    ADS  Google Scholar 

  23. H. Fan, X. Zhao, J. Yang, X. Shan, L. Yang, Y. Zhang, X. Li, M. Gao, Catal. Commun. 29, 29 (2012)

    Google Scholar 

  24. B. Li, H. Cao, J. Mater. Chem. 21, 3346 (2011)

    Google Scholar 

  25. J. Wang, T. Tsuzuki, B. Tang, X. Hou, L. Sun, X. Wang, ACS Appl. Mater. Interfaces 4, 3084 (2012)

    Google Scholar 

  26. H. Chang, Z. Sun, K.Y.F. Ho, X. Tao, F. Yan, W.M. Kwok, Z. Zheng, Nanoscale 3, 258 (2011)

    ADS  Google Scholar 

  27. J.M. Lee, Y.B. Pyun, J. Yi, J.W. Choung, W.I. Park, J. Phys. Chem. C 113, 19134 (2009)

    Google Scholar 

  28. Y. Yang, T. Liu, Appl. Surf. Sci. 257, 8950 (2011)

    ADS  Google Scholar 

  29. Z. Chen, N. Zhang, Y.J. Xu, Cryst. Eng. Comm. 15, 3022 (2013)

    Google Scholar 

  30. B. Li, T. Liu, Y. Wang, Z. Wang, J. Colloid Interface Sci. 377, 114 (2012)

    Google Scholar 

  31. L. Jia, D.H. Wang, Y.X. Huang, A.W. Xu, H.Q. Yu, J. Phys. Chem. C 115, 11466 (2011)

    Google Scholar 

  32. W.S. Hummers Jr, J. Am. Chem. Soc. 80, 1339 (1958)

    Google Scholar 

  33. J. Liu, H. Bai, Y. Wang, Z. Liu, X. Zhang, D.D. Sun, Adv. Funct. Mater. 20, 4175–4181 (2010)

    Google Scholar 

  34. M. Ahmad, E. Ahmed, Z.L. Hong, J.F. Xu, N.R. Khalid, A. Elhissi, W. Ahmed, Appl. Surf. Sci. 274, 273 (2013)

    ADS  Google Scholar 

  35. Y. Wu, B. Wang, Y. Ma, Y. Huang, N. Li, F. Zhang, Y. Chen, Nano Res. 3, 661 (2010)

    Google Scholar 

  36. K.R. Nemade, S.A. Waghuley, J. Elect. Mater. 42, 10 (2013)

    Google Scholar 

  37. C. Xu, X. Wang, J. Zhu, J. Phys. Chem. C 112, 19841 (2008)

    Google Scholar 

  38. D. Cai, M. Song, J. Mater. Chem. 17, 3678 (2007)

    Google Scholar 

  39. X. Zhou, T. Shi, H. Zhou, Appl. Surf. Sci. 258, 6204 (2012)

    ADS  Google Scholar 

  40. S. Liu, H. Sun, A. Suvorova, S. Wang, Chem. Eng. J. 229, 533 (2013)

    Google Scholar 

  41. J. Guo, Y. Li, S. Zhu, Z. Chen, Q. Liu, D. Zhang, W.J. Moonc, D.M. Song, RSC Advances 2, 1356 (2012)

    Google Scholar 

  42. T. Xu, L. Zhang, H. Cheng, Y. Zhu, Appl. Catal. B: Environ. 101, 382 (2011)

    Google Scholar 

  43. Y. Wang, R. Shi, J. Lin, Y. Zhu, Appl. Catal. B: Environ. 100, 179 (2010)

    Google Scholar 

  44. S.J. Yang et al., J. Mater. Chem. A 1, 9427 (2013)

    ADS  Google Scholar 

  45. X. Liu et al., Chem. Eng. J. 183, 238 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Chand Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anand, K., Singh, O. & Singh, R.C. Different strategies for the synthesis of graphene/ZnO composite and its photocatalytic properties. Appl. Phys. A 116, 1141–1148 (2014). https://doi.org/10.1007/s00339-013-8198-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8198-x

Keywords

Navigation