Skip to main content
Log in

Structural and dielectric properties of undoped ZnO pellets prepared by solid state route

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Undoped zinc oxide has been prepared at various growth temperatures by a conventional sintering process. The crystal structures of the prepared samples were studied by X-ray diffraction. The frequency-dependent dielectric dispersion of all the sintered ZnO ceramics was investigated in the temperature range from −100 to 30 °C and in the frequency range from 1 Hz to 10 MHz by broadband dielectric spectroscopy. An analysis of the complex permittivity and electric modulus as a function of frequency has been performed assuming a distribution of relaxation times. The pellet sintered at 900 °C showed the lowest value of the dielectric strength. The temperature dependent of the parameter α is discussed. While the charge transport through the grain and grain boundary regions was examined by impedance spectroscopy. Activation energy values extracted from conduction measurements were found to be in the range of 0.09 and 0.3 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.R. Clarke, Varistor ceramics. J. Am. Ceram. Soc. 82, 485 (1999)

    Article  Google Scholar 

  2. T. Minami, H. Sato, H. Nanto, S. Takata, Group III impurity doped zinc oxide thin films prepared by rf magnetron sputtering. Jpn. J. Appl. Phys. 24, 781 (1985)

    Article  ADS  Google Scholar 

  3. F.-C. Lin, Y. Takao, Y. Shimizu, M. Egashira, Zinc oxide varistor gas sensors: effect of Bi2O3 content on the H2 sensing properties. J. Am. Ceram. Soc. 78, 2301 (1995)

    Article  Google Scholar 

  4. A. Thoria, Baeraky. Egypt. J. Solids. 30, 13 (2007)

    Google Scholar 

  5. Zhimin Dang, Lizhen Fan, Shujin Zhao, Cewen Nan, Dielectric properties and morphologies of composites filled with whisker and nanosized zinc oxide. Mater. Res. Bull. 38, 499 (2003)

    Article  Google Scholar 

  6. Moti Ram, A.c. conductivity and relaxation in LiCoVO4 ceramics. Curr. Appl. Phys. 10, 1013 (2010)

    Article  ADS  Google Scholar 

  7. K.H. Mahmoud, F.M. Abdel-Rahim, K. Atef, Y.B. Saddeek, Dielectric dispersion in lithium-bismuth-borate glasses. Curr. Appl. Phys. 11, 55 (2011)

    Article  ADS  Google Scholar 

  8. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113 (2001)

    Article  Google Scholar 

  9. M. Wang, J. Wang, W. Chen, Y. Cui, L. Wang, Effect of preheating and annealing temperatures on quality characteristics of ZnO thin film prepared by sol–gel method. Mater. Chem. Phys. 97, 219 (2006)

    Article  Google Scholar 

  10. M.F. Ogawa, Y. Natsume, T. Hirayama, H. Sakata, Preparation and electrical properties of undoped zinc oxide films by CVD. J. Mater. Sci. Lett. 9, 1351 (1990)

    Article  Google Scholar 

  11. R.K. Sendi, S. Mahmud, Effects of high-oxygen thermal annealing on structural, electrical and optical properties of undoped ZnO discs made from 40-nm ZnO nanoparticles. Indian J. Phys. 87, 523 (2013)

    Article  ADS  Google Scholar 

  12. A. Swalha, M. Abu-Abdeen, A. Sedky, Phys. B 404, 1316 (2009)

    Article  ADS  Google Scholar 

  13. A. Janotti, C.G. Van de Walle, Phys. Rev. B 76, 165202 (2007)

    Article  ADS  Google Scholar 

  14. P.D.C. King, T.D. Veal, J. Phys.: Condens. Matter 23, 334214 (2011)

    Google Scholar 

  15. V. Biju, M. Abdul, Khaddar. J. Mater. Sci. 36, 5779 (2001)

    Article  ADS  Google Scholar 

  16. J. Huang, H. Lu, Z. Ye, L. Wang, B. Zhao, H. He, Microstructure and defect investigations of the as-grown and annealed ZnO/Si thin films. J. Appl. Phys. 102, 053521 (2007)

    Article  ADS  Google Scholar 

  17. H.F. Liu, S.J. Chua, G.X. Hu, H. Gong, N. Xiang, Annealing effects on electrical and optical properties of ZnO thin-film. J. Appl. Phys. 102, 063507 (2007)

    Article  ADS  Google Scholar 

  18. O. Schmidt, P. Kiesel, D. Ehrentraut, T. Fukuda, Johnson NM Electrical characterization of ZnO, including analysis of surface conductivity. Appl. Phys. A 88, 71 (2007)

    Article  ADS  Google Scholar 

  19. Mi-jin Jin, Junhyeon Jo, Guru P. Neupane, Jeongyong Kim, Ki-Seok An, Jung-Woo Yoo, Tuning of undoped ZnO thin film via plasma enhanced atomic layer deposition and its application for an inverted polymer solar cell. AIP Adv. 3, 102114 (2013)

    Article  ADS  Google Scholar 

  20. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice Hall, Englewood Cliffs, 2001)

    Google Scholar 

  21. G.B. Williamson, R.C. Smallman, Phil. Mag. 1, 34 (1956)

    Article  ADS  Google Scholar 

  22. A.K. Jonscher, Universal Relaxation Law Chap 5 (Chelsea Dielectric Group, London, 1996)

    Google Scholar 

  23. G.M. Tsangaris, G.C. Psarras, N. Coulombi, J. Mater. Sci. 33, 2027 (1998)

    Article  ADS  Google Scholar 

  24. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric press, London, 1983)

    Google Scholar 

  25. Xiaolin Chen, Yonghong Cheng, Xiaojun Xie, Wutong Feng, Hong Wang, International Conferences on Solid Dielectrics (Winchester, UK, 2007)

    Google Scholar 

  26. A.R.M. Yusoff, W.H. Abd, Majid. Eur. Phys. J. B 45, 33 (2005)

    Article  ADS  Google Scholar 

  27. D. Fernandez Hevia, A.C. Caballero, J. de Frutos, J.F. Fernandez, J. Eur. Ceram. Soc. 25, 3005 (2005)

    Article  Google Scholar 

  28. G. Garcia-Belmonte, J. Bisquert, F. Fabregat-Santiago, Effect of trap density on the dielectric response of varistor ceramics. Solid-State Electron. 43, 2123 (1999)

    Article  ADS  Google Scholar 

  29. D.C. Sinclair, A.R. West, J. Mater. Sci. 29, 6061 (1994)

    Article  ADS  Google Scholar 

  30. M.A.L. Nobre, S. Lanfredi, J. Phys. Chem. Solids 64, 2457 (2003)

    Article  ADS  Google Scholar 

  31. R. Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994)

    Article  ADS  Google Scholar 

  32. E.J. Abram, D.C. Sinclair, A.R. West, J. Electroceram. 10, 165 (2003)

    Article  Google Scholar 

  33. A.K. Jonscher, Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

  34. J.B. Jorcin, M.E. Orazem, N. Pebere, B. Tribollet, Electrochim. Acta. 51, 1473 (2006)

    Article  Google Scholar 

  35. B. Chiou, M. Chung, Admittance spectroscopy and trapping phenomena of ZnO based varistors. J. Electron. Mater. 20, 885 (1991)

    Article  ADS  Google Scholar 

  36. M.W. Dudek, K. Nitsch, A. Dziedzic, T. Piasecki, Microelectron. Reliab. 51, 1219 (2011)

    Article  Google Scholar 

  37. Z. Jun-Liang, Z. Wenqing, L. Xiao-Min, F. Ji-Wei, S. Xun, J. Phys, Condens. Mat. 18, 1495 (2006)

    Article  ADS  Google Scholar 

  38. R. Ondo-Ndong, G. Ferblantier, F. Pascal-Delannoy, A. Boyer, A. Foucaran, Microelectr J. 34, 1087 (2003)

    Article  Google Scholar 

  39. A.M.R. Jiaping Han, P.Q. Senos, Mantas, Mater. Chem. Phys. 75, 117 (2002)

    Article  Google Scholar 

  40. C.-W. Nahm, Ceram. Int. 36, 1109 (2010)

    Article  Google Scholar 

  41. Jianying Li, Bo Li, Dengyun Zhai, Shengtao Li, M.A. Alim, J. Phys. D Appl. Phys. 39, 4969 (2006)

    Article  ADS  Google Scholar 

  42. A. West, M. Andres-Verges, Impedance and modulus spectroscopy of ZnO varistors. J. Electroceram. 2, 2125 (1997)

    Google Scholar 

  43. G. Garcia-Belmonte, J. Bisquert, F. Fabregat-Santiago, Effect of trap density on the dielectric response of varistor ceramics. Solid-State Electron 43, 2123 (1999)

    Article  ADS  Google Scholar 

  44. M. Alim, M. Seitz, R. Hirthe, Complex plane analysis of trapping phenomena in zinc oxide based varistor grain boundaries. J. Appl. Phys. 63, 2337 (1988)

    Article  ADS  Google Scholar 

  45. J. Cordaro, Y. Shim, J. May, Bulk electron traps in zinc oxide varistors. J. Appl. Phys. 60, 4186 (1986)

    Article  ADS  Google Scholar 

  46. T. Gupta, W. Carlson, A grain-boundary defect model for instability/stability of a ZnO varistor. J. Mater. Sci. 20, 3487 (1985)

    Article  ADS  Google Scholar 

  47. E.-C. Lee, Y.S. Kim, Y.G. Jin, K.J. Chang, Phys. Rev. B. 64, 085120 (2001)

    Article  ADS  Google Scholar 

  48. A. Maddalena, R.D. Maschio, S. Dire, A. Raccanelli, Non-Cryst. Solids. 121, 365 (1990)

    Article  ADS  Google Scholar 

  49. G.C. Kuezynski, N.A. Hooton, C.F. Gibbon, Sintering and Related Phenomenon, Gordon and Breach, New York (1967), p. 65

  50. M. Pal, P. Brahma, D. Chakravorthy, J. Phys. Soc. Jpn. 63, 3356 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariem Chaari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaari, M., Matoussi, A. Structural and dielectric properties of undoped ZnO pellets prepared by solid state route. Appl. Phys. A 116, 1149–1160 (2014). https://doi.org/10.1007/s00339-013-8199-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8199-9

Keywords

Navigation