Skip to main content
Log in

Laser-induced synthesis of silver nanoparticles and their conjugation with protein

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Partially oxidized spherical silver nanoparticles (AgNPs) of different size are prepared by pulsed laser ablation in water and directly conjugated to protein S-ovalbumin for the first time and characterized by various optical techniques. UV–Visible spectrum of AgNPs showed localized surface plasmon resonance (LSPR) peak at 396 nm which red shift after protein addition. Further the increased concentration of AgNPs resulted a decrease in intensity and broadening of S-ovalbumin peak (278 nm), which can be related to the formation of protein NPs complex caused by the partial adsorption of S-ovalbumin on the surface of AgNPs. The red shift in LSPR peak of AgNPs after mixing with S-ovalbumin and decrease in protein-characteristic peak with increased silver loading confirmed the formation of protein–AgNPs bioconjugates. The effect of laser fluence on the size of AgNPs and nanoparticle–protein conjugation in the size range 5–38 nm is systematically studied. Raman spectra reveal broken disulphide bonds in the conjugated protein and formation of Ag–S bonds on the nanoparticle surface. Fluorescence spectroscopy showed quenching in fluorescence emission intensity of tryptophan residue of S-ovalbumin due to energy transfer from tryptophan moieties of albumin to AgNPs. Besides this, small blue shift in emission peak is also noticed in presence of AgNPs, which might be due to complex formation between protein and nanoparticles. The binding constant (K) and the number of binding sites (n) between AgNPs and S-ovalbumin have been found to be 0.006 M−1 and 7.11, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.P. Kottmann, O.J. Martin, D.R. Smith, S. Schultz, Phys. Rev. B 64, 235402 (2001)

    Article  ADS  Google Scholar 

  2. G.T. Boyd, Th Rasing, J.R.R. Leite, Y.R. Shen, Phys. Rev. B 30, 519 (1984)

    Article  ADS  Google Scholar 

  3. S. Schultz, D.R. Smith, J. J Mock, D. A. Schultz, PNAS 97, 996 (2000)

    Google Scholar 

  4. S.Y. Liau, D.C. Read, W.J. Pugh, J.R. Furr, A.D. Russell, Lett. Appl. Microbiol. 25, 279 (1997)

    Article  Google Scholar 

  5. A. Gupta, S. Silver, Nat. Biotechnol. 16, 888 (1998)

    Article  Google Scholar 

  6. K. Nomiya, A. Yoshizawa, K. Tsukagoshi, N.C. Kasuga, S. Hirakawa, J. Watanabe, J. Inorg. Biochem. 98, 46 (2004)

    Article  Google Scholar 

  7. I. Sondiand, B. Salopek-Sondi, J. Colloid Interface Sci. 275, 177 (2004)

    Article  Google Scholar 

  8. S. Petersen, J. Jakobi, S. Barcikowski, Appl. Surf. Sci. 255, 5435 (2009)

    Article  ADS  Google Scholar 

  9. S. Petersen, S. Barcikowski, Adv. Funct. Mater. 19, 1167 (2009)

    Article  Google Scholar 

  10. S. Besner, A.V. Kabashin, F.M. Winnik, M. Meunier, J. Phys. Chem. C 113, 9526 (2009)

    Article  Google Scholar 

  11. J.P. Sylvestre, A.V. Kabashin, E. Sacher, M. Meunie, J.H.T. Luong, J. Am. Chem. Soc. 126, 7176 (2004)

    Article  Google Scholar 

  12. J.P. Sylvestre, S. Poulin, A.V. Kabashin, E. Sacher, M. Meunier, J.H.T. Luong, J. Phys. Chem. B 108, 16864 (2004)

    Article  Google Scholar 

  13. S. Petersen, S. BarcikowskiJ, Phys. Chem. C113, 19830 (2003)

    Google Scholar 

  14. J.M. Nam, C.S. Thaxtonand, C.A. Mirkin, Science 301, 1884 (2003)

    Article  ADS  Google Scholar 

  15. A.G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M.F. Anderson, S. Franzen, D.L. Feldheim, J. Am. Chem. Soc. 125, 4700 (2003)

    Article  Google Scholar 

  16. N. Wangoo, C.R. Suri, G. Shekhawat, Appl. Phys. Lett. 92, 133104 (2008)

    Article  ADS  Google Scholar 

  17. I. Lynch, K.A. Dawson, Nanotoday 3, 40 (2008)

    Article  Google Scholar 

  18. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B105, 5114 (2001)

    Article  Google Scholar 

  19. T. Peters Jr, In All About Albumin: Biochemistry, Genetics, and Medical Applications (Academic Press, San Diego, 1996), p. 9

    Google Scholar 

  20. J.L. Burt, C.G. Wing, M.M. Yoshida, M.J. Yacama, Langmuir 20, 11778 (2004)

    Article  Google Scholar 

  21. P.B. Kandagal, S. Ashoka, J. Seetharamappa, S.M.T. Shaikh, Y. Jadegoud, O.B. Ijare, J. Pharm. Biomed. Anal. 41, 393 (2006)

    Article  Google Scholar 

  22. Y.Q. Wang, H.M. Zhang, G.C. Zhang, W.H. Tao, Z.H. Fei, Z.T. Liu, J. PharmBiomed. Anal. 43, 1869 (2007)

    Article  Google Scholar 

  23. D. Zhang, O. Neumann, H. Wang, V.M. Yuwono, A. Bar-houmi, M. Perham, J.D. Hartgerink, P. Wittung-Stafshede, N.J. Halas, Nano Lett. 9, 666 (2009)

    Article  ADS  Google Scholar 

  24. C.D. Keating, K.M. Kovaleski, M.J. Natan, J. Phys. Chem. B102, 9404 (1998)

    Article  Google Scholar 

  25. S. Chah, M.R. Hammond, R.N. Zare, Chem. Biol. 12, 323 (2005)

    Article  Google Scholar 

  26. N. Biswas, A.J. Waring, F.J. Walther, R.A. Dluhy, Biochim. Biophys. Acta 1768, 1070 (2007)

    Article  Google Scholar 

  27. R.J. Clark, R.E. Hester, Spectroscopy of Biological Systems (John Wiley & Sons Ltd, New York, 1986)

    Google Scholar 

  28. T. Miura, H. Takeuchi, I. Harada, Biochemistry 27, 88 (1988)

    Article  Google Scholar 

  29. C.S. Levin, B. GJanesko, R. Bardhan, G.E. Scuseria, J. DHartgerink, N.J. Halas, Nano Lett. 6, 2617 (2006)

    Article  ADS  Google Scholar 

  30. R.F. Chenhas, Arch. Biochem. Biophys. 142, 552 (1971)

    Article  Google Scholar 

  31. K.H. Ulrich, Pharmacol. Rev. 33, 17 (1981)

    Google Scholar 

  32. B.F. Pan, F. Gao, L.M. Ao, J. Magnes. Magn. Mater. 293, 252 (2005)

    Article  ADS  Google Scholar 

  33. R.F. Chenhas, Arch. Biochem. Biophys. 168, 605 (1973)

    Google Scholar 

  34. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, New York, 2006)

    Book  Google Scholar 

  35. A.C. Tedesco, D.M. Oliveira, Z.G.M. Lacava, R.B. Azevedo, E.C.D. Lima, P.C. Morais, J. Magnes. Magn. Mater. 272–276, 2404 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepti Joshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, D., Soni, R.K. Laser-induced synthesis of silver nanoparticles and their conjugation with protein. Appl. Phys. A 116, 635–641 (2014). https://doi.org/10.1007/s00339-013-8210-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8210-5

Keywords

Navigation